
Bye-Bye BKL
After many painful years, Arnd Bergmann
posted the patch that many kernel developers
have been waiting for: the final removal of the
Big Kernel Lock (BKL). He listed a big pile of
people who had participated in the effort. Ingo
Molnar shouted out, “Yay!” And Thomas Gleix-
ner added, “Thanks a lot to everyone involved!”

Alan Cox said wistfully, “Nice to see it gone
– it seemed such a good idea in Linux 1.3.” To
which Ingo replied:

“No need to feel bad about it – there was
simply no other way to do it: the BKL basically
represented all the single-CPU assumptions
that were built into the kernel from 0.10 up to
1.3 (and at least as much new BKL depending
code going forward as well…).”

Ingo also said, “every last such piece of code
had to be eliminated. So the BKL represented
the status quo – and eliminating the status quo
is always hard, as the code that remains be-
came less and less important :-)”

This is definitely a champagne moment in
Linux history. A huge amount of work by a
huge number of people over a huge quantity of
time had to go into removing the BKL; it might
not be as flashy as some of the fancy features
going into the kernel these days, but look at it
this way – if you consider the sheer number of
man-hours that has gone into removing the
BKL, it represents a massive amount of time
that can now be turned to who-knows-what
other magnificent projects.

New Static Analysis Tool
Reinhard Tartler announced that he and a
bunch of other folks (the Vamos team) had
created a new tool called “undertaker,” avail-
able at http:// vamos. informatik. uni‑erlangen.
 de/ trac/ undertaker, that does static code anal-
ysis on kernel sources, identifying potential
bugs without actually compiling or running
the code.

This work was greeted with general praise
as folks downloaded and tried it out. One of
the interesting goals of the project is that the
Vamos team prefers to avoid giving false bug
reports, even if that means undertaker will
miss out on reporting on actual problems. This
way, if undertaker does report something, you
can be fairly confident it’s identified as an ac-
tual bug, and you can start writing your patch
accordingly.

Status of Nexus One in the
Kernel
An interesting eruption occurred recently sur-
rounding Google’s port of Linux to the Nexus
One phone device.

Apparently, just about everyone would like
to see the code get into the official kernel tree,
but the Nexus One code base deviates suffi-
ciently from the official tree that a straightfor-
ward merge would be problematic. The Linux
developers want to see a clean set of patches
that play nice with the rest of the code.

Daniel Walker recently inadvertently un-
leashed a firestorm when he submitted a pile
of patches that was a first attempt at this task.
He took Google’s code, massaged it until he
could get something that would boot (albeit re-
quiring a serial connection to see any output),
and then submitted the patches to the Linux
folks.

Unfortunately, several things went boom all
at once. For starters, Daniel neglected to give
proper attribution to the original Google em-
ployees who authored the port. Instead, he
listed himself as the author, which brought a
big heap of hurt down on him from various
kernel developers, claiming he was taking
credit for the work of others.

As the quote-unquote discussion progressed,
it came out that Daniel didn’t actually have ac-
cess to the identities of the original authors be-
cause of the way Google’s code base was pro-
duced. So, Daniel had just been giving credit
to Google in the text of the commit messages,
while at the same time keeping his own name
in the author field to indicate the work he had
done massaging all the patches so that they
would fit into the official kernel tree in a
friendly way.

This misunderstanding led to many bitter
words before it was cleared up; partly, this was
because Daniel was not being totally clear on
the purpose and true significance of the vari-
ous fields in the commit messages. At one
point, Steven Rostedt clarified:

“You stated that the copyright was not yours
but Google's. You are not employed by Google,
are you? The major problem I have with these
patches is that you got code from somewhere
else but had no Signed-off-bys from anyone.
This is where legal comes in.”

Steven went on to say: “How do you know
this code was attained legally? Can you take

The Linux kernel mailing list
comprises the core of Linux
development activities. Traf-
fic volumes are immense,
often reaching 10,000 mes-
sages in a week, and keeping
up to date with the entire
scope of development is a
virtually impossible task for
one person. One of the few
brave souls to take on this
task is Zack Brown.

 Zack Brown

Zack's Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

April 2011 issue 125 linux-mAgAzine.com | linuxpromAgAzine.com 90

Community Notebook
Kernel News

090-091_kernel-news.indd 90 15.02.2011 18:10:37 Uhr

sole responsibility that the code was not stolen from non GPL code? The only tag line
in a change log that matters is that Signed-off-by. Its the one with (sorta) legal pow-
ers. This is saying that you verify that this code was given to you through legal
means. Either that you wrote the code yourself and are not under any contract to
keep it from becoming GPL, or you took it from someone that gave you their own
Signed-off-by that you can trust.”

Shortly afterwards, Dima Zavin of Google, who’d been working on the Nexus One
code base, said Google was very pleased that Daniel had volunteered to port this code
back to the main kernel tree but that they did want proper attribution to be main-
tained.

This comment helped clarify an additional part of the problem, which was: Instead
of attempting to merge the Nexus One Git tree, which would preserve all the history
of that development, Daniel just based his own set of patches off of the tip of their
code base and submitted just those patches to the Linux folks.

But some Linux developers, such as Russell King, felt that the Nexus One Git repos-
itory had become too filled with micro-patches and non-working messiness before it
had reached a workable state. And, King felt that importing such a history into the of-
ficial kernel tree would be introducing just too much of that mess into the kernel
history. So, he argued that Daniel had done the right thing in just submitting his
own patches.

Although this “micro” nature of Nexus One development made it more diffi-
cult to determine authorship, he agreed with Dima that, somehow or other, a
proper chain of attribution should be maintained in that case.

But, as Thomas Gleixner pointed out, and as Daniel Walker himself was
probably aware when confronting the initial task of creating his patches,
the correct attribution in some cases remains an inherently difficult
problem to solve. Thomas took Daniel’s patches and compared them
with the Nexus One code base and discovered a case where Dima
Zavin himself had created a single large commit from a number
of other places with 16 authors who could not clearly be
paired up with the code they wrote.

Thomas added, “The people who make a lot of noise
about this, including you, did not even bother to look at
the patches and the originating mess, which is in no way
suitable to go near mainline in any form.”

Dima actually agreed that including the true history of
the Nexus One Git tree would be pointless and that he
liked what Daniel had done with the code. However,
Dima said his own request for attribution was simply:
“that if files are directly copied out of the tree with
only slight modifications or if they are copied and
stripped down for easier consumption, just say Original
Authors: if it’s reasonable to gather who the primary
contributors are. If that is hard due to lots of commits
and squashes, even a Cc: to the people who wrote the
code would have been enough.”

So, ultimately, it seems that in this case the misunder-
standings were resolved and that a more appropriate ap-
proach was identified.

This is a pretty interesting situation, however, because
it’s very common for a large project with its own Git tree
to end up in this position, facing a difficult merging
problem that can only be solved by some rough wran-
gling. nnn

Community Notebook
Kernel News

91linux-mAgAzine.com | linuxpromAgAzine.com

090-091_kernel-news.indd 91 15.02.2011 18:10:46 Uhr

