
Trouble at the office? It doesn’t

necessarily need to lead to a bat-

tle, such as in the video The

Great Office War [2] by toy manufacturer

Hasbro. Even if you don’t have an attack

plan, the USB-controlled Rocket Baby

rocket launcher (Figure 1), by Chinese

manufacturer Cheeky Dream, is a bar-

gain at less than US$ 20. Not only did it

cheer up my colleagues at work, it also

gave me an opportunity to study the

Linux kernel’s fairly complex USB sub-

system [3].

Opening the box reveals a CD for Win-

dows XP, but no trace of a Linux driver.

This seems to have provoked a number

of gadget fans in the developer commu-

nity to investigate the USB protocol the

toy uses on Windows with USB sniffers

such as USBsniff, to reverse engineer the

interfaces, and create bindings for lan-

guages such as Python, or even for com-

pletely different operating systems [4].

When the toy is plugged into an empty

USB slot, the Ubuntu Hardy Heron distri-

bution autodetects it. The kernel mes-

sages, which can be read in the /var/log/

messages logfile (Figure 2), tell you that

the toy rocket launcher is now connected

to the Intel-based PC’s UHCI controller.

According to the logfile, the kernel’s

USB subsystem has mapped the rocket

launcher to usb 5-1. The sysfs tree below

/sys/bus/usb/devices/5-1 gives you the

details. The USB filesystem, usbfs, proj-

ects the kernel’s internal USB data to us-

erspace this way. Figure 3 shows that the

idVendor value for the launcher is

0x0a81, and the idProduct is 0x0701, as

can be determined easily by looking up

Although a USB toy such as a polystyrene rocket launcher only includes a Windows CD, it works fine on

Linux with a spot of reverse engineering. With libusb, this doesn’t even require compiling a device driver –

Perl controls the device from userspace. BY MICHAEL SCHILLI

Figure 1: The USB rocket launcher Rocket

Baby, by Cheeky Dream.

Figure 2: After you plug in the rocket launcher, the kernel detects the device and assigns a

USB entry to it.

Perl script controls toy USB canon

REPLACING
TIN SOLDIERS

J
a
n

-P
a
u

l H
err, p

ix
elio.d

e
Perl: USB SubsystemPROGRAMMING

74 ISSUE 103 JUNE 2009

the content of the respective files in the

sysfs tree. According to the order in

which you plug in the USB devices, the

kernel assigns varying USB numbers for

them; instead of usb 5-1, it could be usb

3-1 next time.

This said, there is only one device

with the idVendor and idProduct values

we just discovered plugged into the PC;

thus, a program can find the USB ad-

dress of the device reliably and fairly

quickly by parsing the USB tree until it

finds the right combination.

Linux normally uses kernel device

drivers to talk to USB devices. A driver is

difficult to program because there is no

safety net, as taken for granted in user

space; the slightest pointer error will tor-

pedo the whole Linux system and force a

reboot. On top of this, users would need

to recompile the device driver for each

new kernel and load the module as root

by running modprobe. Data structures

tend to change rapidly in the kernel, and

it is possible that the source code you

write for kernel 2.6.22 goes out the win-

dow with version 2.6.24.

But if you do not need high data

throughput or realtime responses, there

is no need to leave the control logic with

the kernel. Instead, the kernel has the

usbfs that lets you talk to USB devices at

the hardware level, and this means that

you can implement the driver in user-

space.

The Open Source libusb project [5]

provides a convenient library for C pro-

grams, and the Perl Device::USB module

from CPAN wraps

Perl functions

around it.

Listing 3 shows

you how to raise

the rocket launch-

er’s barrels by

about half an inch

with just a couple

of lines of Perl

code. First, the

find_device() func-

tion uses the

Device::USB module to locate the device

with the idVendor and idProduct values

discovered beforehand in the USB tree. If

this succeeds, the open() method opens

a connection to the device.

The kernel’s USB subsystem supports

four different communication modes for

USB controllers: Control Transfers for

short messages, Bulk Transfers for larger

volumes of data, Interrupt Transfers for

time-critical data, and Isosynchronous

Transfers for realtime data. Reverse engi-

neering helped the developers discover

that the rocket launcher uses one-byte

control messages to move the tower and

fire the polystyrene rockets. Listing 1

shows the codes for various actions.

One code moves the launcher until an-

other code either changes the direction

or a stop command cancels the move-

ment, which is important because if a

program starts a movement and then

fails, the rocket launcher’s motor will

annoyingly keep on running. The hex

values passed into the control_msg()

method in Lines 14 and 22 define how

the USB interface passes the control byte

on to the controller: 0x21 stands for the

request type, 0x09 for USB_REQ_SET_

CONFIGURATION, 0x02 for USB_RECIP_

ENDPOINT, and the value 0 for an un-

used index. Then comes the control code

(0x02 for moving the barrels up in line

15) for driving the launcher. Perl’s chr()

function transforms an integer value,

such as 0x02, into a single byte contain-

ing the same value.

The last two parameters specify the

length of the string, 1, or exactly one

byte in our case, and the response wait

time in milliseconds (1000) before the

program times out.

After this, the test program takes a

short break of a tenth of a second

(10,000 microseconds) thanks to the

CPAN Time::HiRes module and its

usleep() function, before going on to

send the 0x20 control byte, which the re-

ceiving end interprets as a stop com-

mand, thus switching the rocket

01 #!/usr/local/bin/perl -w

02 use strict;

03

 04 use Time::HiRes qw(usleep);

05 use Device::USB;

06 my $usb = Device::USB->new;

07 my $dev =

08 $usb->find_device(0xA81,

09 0x701);

10 $dev->open;

11

 12 # Move Up

13 my $val = 0x02;

14 $dev->control_msg(0x21,

15 0x09, 0x02, 0, chr($val),

16 1, 1000);

17

 18 usleep(150_000);

19

 20 # Stop

21 $val = 0x20;

22 $dev->control_msg(0x21,

23 0x09, 0x02, 0, chr($val),

24 1, 1000);

25

 26 # Read status

27 $val = 0x40;

28 my $buf;

29 $dev->control_msg(0x21,

30 0x09, 0x02, 0, chr($val),

31 1, 1000);

32 $dev->bulk_read(1,

33 $buf = "", 1, 1000);

34 printf "Status %08b\n",

35 ord($buf);

Listing 3: rocket-test

Figure 3: Linux shows details of hotplugged devices in the /sys tree.

01 down 0x01,

02 up 0x02,

03 left 0x04,

04 right 0x08,

05 fire 0x10,

06 stop 0x20,

07 start 0x40,

Listing 1: Control Codes

01 $requesttype => 0x21

02 $request => 0x09

03 $value => 0x02

04 $index => 0

05 $bytes => chr(...)

06 $size => 1

07 $timeout => 1000

Listing 2: Parameters for
control_msg()

PROGRAMMINGPerl: USB Subsystem

75ISSUE 103JUNE 2009

launcher tower motor off. In Listing 3,

the two calls to control_msg() thus move

the launcher tower up for a tenth of a

second. If the tower is not at its maxi-

mum elevation already, this means that

you hear the motor for a fraction of the

second and the polystyrene rockets are

elevated by about 20 degrees.

Fire!
When you fire the rockets, note that the

motor needs to pump for about two sec-

onds to build up the pressure needed to

fire the projectiles. So that the program

can discover when to switch off the

motor, because the rocket has been re-

leased, it must access the USB interface

and read the rocket launcher controller

data. The controller reports which ac-

tions are available now, and which are

not. If the tower is swiveled as far right

as it will turn, the controller returns a

status string with a value of 0x08 (binary

0000_1000) to show that all actions apart

from 0x08 are now available; as you will

see in box 1, 0x08 represents the direc-

tion right. If the tower is swiveled as far

left and to the bottom as it will turn, the

controller returns a status message of

0x05 (binary 0000_0101), because both

0x01 (down) and 0x04 (left) are now

blocked. In a similar fashion, the USB de-

vice sets a 0x10 flag (binary 0001_0000)

shortly after firing to tell the controller

that it can now issue a 0x20 to switch off

the motor, unless you want to fire the

next in line of the total of three rockets.

To check the launcher status, the con-

troller first sends a control code of 0x40

via control_msg() to the USB device,

which is immediately followed by a bulk

transfer using the bulk_read() method to

pick up the data string returned by the

device. Line 34 in Listing 3 writes the re-

sult, which is 00000000 in most cases,

unless the tower is swiveled to one of

the limits, or at minimum or maximum

elevation, or a rocket has just been fired.

The Device::USB::MissileLauncher::Ro

cketBaby module from CPAN provides a

neat interface abstraction; a newly con-

structed object offers the do() and

cando() methods, which expect actions

as strings such as left, up, fire, or stop.

The do() method executes these actions,

whereas cando() just issues a status re-

quest and a bulk read to check whether

an action is currently available.

Listing 4 shows you how to use this.

To start, it rotates the tower down and to

the left to the limits to ascertain the pre-

cise position, then it measures the time

required to elevate the tower completely

and to swivel it fully to the right. Then it

divides the two times by half and centers

the tower using the calculated values be-

fore firing all three rockets one after an-

other.

Installation
Linux needs the libusb-dev package in

userspace to access USB devices. Any

fairly recent distribution will have this.

The Device::USB and Device::USB::Missi

leLauncher::RocketBaby modules are

best installed using a CPAN shell. Vari-

ous types of rocket launchers use differ-

ent code combinations; when in doubt,

you can search for the right combination

on the Internet and then wrap it up in an

abstraction such as the CPAN Rocket-

Baby module.

A Youtube video [6] shows you how

the rocket launcher responds to the cen-

ter-fire script. And now a message from

the Homeland Security Department:

please avoid exporting this script to un-

trusted countries. n

01 #!/usr/local/bin/perl -w

02 use strict;

03

 04 use

05 Device::USB::MissileLauncher::Rock

etBaby;

06 use Time::HiRes

07 qw(usleep gettimeofday

08 tv_interval);

09

 10 my $rb =

11 Device::USB::MissileLauncher::Rock

etBaby

12 ->new();

13

 14 do_until("left");

15 do_until("down");

16

 17 my $right_start =

18 [gettimeofday];

19 do_until("right");

20 my $right_elapsed =

21 tv_interval(

22 $right_start,

23 [gettimeofday]

24);

25

 26 my $up_start =

27 [gettimeofday];

28 do_until("up");

29 my $up_elapsed =

30 tv_interval($up_start,

31 [gettimeofday]);

32

 33 do_until("left",

34 $right_elapsed / 2);

35 do_until("down",

36 $up_elapsed / 2);

37

 38 for (1 .. 3) {

39 do_until("fire");

40 usleep(100_000);

41 }

42

 43 #############################

44 sub do_until {

45 #############################

46 my ($what, $max_time) =

47 @_;

48

 49 my $start = [gettimeofday];

50

 51 while ($rb->cando($what))

52 {

53 $rb->do($what);

54 usleep(100_000);

55 last

56 if defined $max_time

57 and

58 tv_interval($start,

59 [gettimeofday]) >

60 $max_time;

61 }

62 $rb->do("stop");

63 }

Listing 4: center-fire

[1] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

[2] The Great Office War:

http:// www. youtube. com/ watch?

 v=pVKnF26qFFM

[3] Essential Linux Device Drivers,

Sreekrishnan Venkateswaran, Pren-

tice Hall, 2007

[4] Python Interfacing a USB Missile

Launcher, Pedram Amini:

http:// dvlabs. tippingpoint. com/ blog/

 2009/ 02/ 12/ python-interfacing-a-usb

-missile-launcher

[5] The libusb project:

http:// libusb. sourceforge. net

[6] Youtube video: http:// www. youtube.

 com/ watch? v=-6qTRhDijJc

INFO

Perl: USB SubsystemPROGRAMMING

76 ISSUE 103 JUNE 2009

