
The Linux kernel

mailing list com-

prises the core of

Linux development

activities. Traffic vol-

umes are immense,

often reaching ten

thousand messages

in a given week, and

keeping up to date

with the entire scope of development is

a virtually impossible task for one per-

son. One of the few brave souls to take

on this task is Zack Brown.

Our regular monthly column keeps you

abreast of the latest discussions and de-

cisions, selected and summarized by

Zack. Zack has been publishing a weekly

online digest, the Kernel Traffic news-

letter, for over five years now. Even

 reading Kernel Traffic alone can be a

time-consuming task.

Linux Magazine now provides you with

the quintessence of Linux kernel activi-

ties, straight from the horse’s mouth.

Mathieu Desnoyers wanted to release the

userspace RCU code he worked on under

the LGPL instead of the GPL so that pro-

prietary code could link with it and use it.

RCU, read-copy-update, is a library that

ensures that data objects defined in the

kernel do not appear undefined to other

running code that tries to access them be-

fore the definition process has completed.

Defining and initializing a struct, for ex-

ample, could expose it in an incomplete

form if the compiler or CPU tries to opti-

mize the data assignments and puts the

struct assignment itself ahead of the code

assigning values to the variables within

that struct. Mathieu’s library makes pro-

tection against this available to user

space. He wanted to know whether

switching to the LGPL would be legal and

acceptable to the Linux community.

Alan Cox pointed out that IBM owned

the patent on the RCU idea and they had

only released the patent for use in GPLed

code, so Mathieu would need to get per-

mission from them before proceeding.

Jiaying Zhang created ktrace, a mecha-

nism for tracing kernel events by insert-

ing tracepoints in the kernel code. The

reason for this innovation is that the ex-

isting markers code are deemed too

heavy-weight. By simplifying the design,

Jiaying and the other ktrace developers

found significant performance enhance-

ments. Some prototype code is posted.

Tom Zanussi posted his own kernel trac-

ing tool, zedtrace, with a minimal home

page at: http:// utt. sourceforge. net/

 zedtrace. html. It lets the user trace any

tracepoints already defined in the kernel

binary. Sophisticated filtering is provided

by the Perl language. Python and Ruby

support, he said, was on the way. Chris-

toph Hellwig said he liked Tom’s tool but

felt that tracepoints themselves were

badly in need of revision. He acknowl-

edged this wasn’t zedtrace’s fault.

Boaz Harrosh submitted an update to the

exofs filesystem. Exofs is designed for Ob-

ject Storage Devices (OSDs), a relatively

new type of storage device that takes ob-

ject orientation into the drive itself. In-

stead of dealing with a character stream

or with blocks of related data, OSDs pres-

ent data as a collection of objects, that in

turn may be composed of other objects.

The idea is that this higher level view into

data allows the user more control over

managing the data and providing security.

The new version is substantially up-

dated. It replaces the kernel-based mkex-

ofs tool with a userspace library that ex-

ports the same API. It also incorporates

fixes that have gone into ext2 in the re-

cent past. Because exofs is a fork of the

ext2 code base, any fix to ext2 is likely to

be a fix to exofs as well. Boaz also modi-

fied the API used to perform object ac-

cess. Exofs exports a standard block-ori-

ented interface, so that exofs filesystems

can be treated the same as any other

block-based filesystem; it also provides

an additional API to support OSD calls.

The previous version used an API from

IBM that was different from the standard

OSD API. The new version uses the

open-osd API directly.

Adrian McMenamin explained that the

Sega Dreamcast visual memory unit im-

plemented a filesystem similar to FAT16.

He posted a driver for the VMUFAT file-

system (culled from an earlier attempt

by him long ago) and said he intended to

document the entire filesystem and write

a userspace tool to create a VMUFAT

image. He also pointed out in the KCon-

fig description that this filesystem was

really very specialized for the Dreamcast

and would not make a great choice on

other drives. A bunch of folks offered

feedback, mainly pointing out a few leg-

acy bugs left over from Adrian’s earlier

code. By the end of it, Adrian decided to

do a more thorough rewrite and aim for

inclusion in a later kernel.

Someone pointed out on the list that

 Microsoft’s exFAT filesystem seemed to

be their answer to large portable flash

drives and asked what, if anything, was

being done in the Linux world to support

the exFAT filesystem. Hirofumi Ogawa re-

plied that he’d already written a read-

only driver, but because of time con-

straints, he had not been working ac-

tively on adding write support. He posted

his code, and H. Peter Anvin asked

whether there were any filesystem specs

available that didn’t require signing away

the ability to write code to them. Hiro-

fumi replied that his own work had been

based on reverse-engineering the filesys-

tem on disk. Meanwhile, Alex Buell con-

verted Hirofumi’s patches to a standard

kernel module that can be compiled out-

side of the kernel, just as long as the sys-

tem has a recent kernel installed. The

code is available for download at: http://

 www. munted. org. uk/ pro gram ming/ exfat.

 tar. bz2.

Kernel News

72 ISSUE 102 MAY 2009

Rafael J. Wysocki pointed out that

phones and other small devices necessi-

tated the ability to suspend the system to

RAM or to a low-power mode automati-

cally after a certain period of idleness.

He said that to implement these features

in Linux, developers had to figure out

what parts should be in the kernel and

what parts in user-land. He enumerated

the various questions, such as how to

tell when the system was idle. In re-

sponse, Arjan van de Ven and Benjamin

Herrenschmidt opened up the debate,

essentially agreeing that a device driver

would have to make those kind of deter-

minations. But as Roland Dreier pointed

out, the situation is more complex in the

case of highly integrated hardware be-

cause different parts of the system can

be suspended at different times, and var-

ious parts of the system can be cleared

to be suspended if various other parts of

the system are already suspended. On a

PC-like system, he said, a device driver

would be sufficient to manage system

suspension for the whole machine, but

for highly integrated systems, many

more options must be considered.

The discussion got very technical. The

problem appears to be that the kernel

shouldn’t concern itself with the state of

various user processes (i.e., userspace

code should watch all that), whereas us-

erspace code shouldn’t concern itself

with shutting down various internal

parts of the system (i.e., the kernel

should handle all that). This issue sup-

plies plenty of examples, counter-exam-

ples, and special historical cases to back

up everyone’s point of view. Ultimately,

a fascinating topological border will no

doubt be established between the user-

side and kernel-side obligations. And

whatever decision is ultimately imple-

mented, it will undoubtedly set prece-

dent for the next big question of where

the kernel ends and the rest of the world

begins.

Tarkan Erimer had the idea of a

“failover” kernel, in which two kernels

would run simultaneously, with the pri-

mary kernel doing all the work and the

failover kernel taking over in the event

of a panic or other crash and simply

continuing to run the system without in-

terruption. Willy Tarreau pointed out

that scheduling both kernels could be a

thorny problem. Also, he explained that

most system crashes were the result of

non-recoverable errors, like memory

corruption or a driver bug. In those

cases, a failover kernel wouldn’t be able

to sanely recover the system because

many conditions would require a reset

to restore to a known state. Memory cor-

ruption could end up worse than before.

He also mentioned that he has imple-

mented a similar concept with the use

of a watchdog timer that would reboot

to a second kernel image if the system

crashed for any reason.

Kernel News

73ISSUE 102MAY 2009

