
everal test suites help you look 

for vulnerabilities in web-based 

applications [1] [2], but many of 

these applications are expensive or diffi-

cult to use. Wouldn’t it be nice just to 

press a button to find out what vulnera-

bilities exist in your own software – 

along with a line reference to help you 

find the problems in the source code? 

Ratproxy [1] is a tiny but powerful tool 

with a simple approach to searching for 

problems in web applications. The Rat-

proxy security testing tool originated in 

the development labs Google, where it 

was created to test Google’s own appli-

cations. In July 2008, the company de-

cided to release the current version to 

the general public under the Apache Li-

cense 2.0.

Google describes Ratproxy as a “semi-

automatic, largely passive web applica-

tion security audit tool.” Lurking behind 

this cryptic description is a tool with a 

simple purpose: Ratproxy sniffs commu-

nications between the browser and the 

application, logging the data stream and 

checking the log for known issues, risks, 

and vulnerabilities. Developers can 

launch Ratproxy and watch the output. 

Ratproxy reaches places that competitive 

products find difficult to access. For ex-

ample, other tools might find it hard to 

reach password-

protected 

areas, or 

they could stumble over 

some forwarding scenarios. In the same 

way, Ratproxy cleverly works around 

Javascript issues. Legacy test tools em-

ploy guess work to discover which func-

tion will be used next. This problem oc-

curs particularly in GUI testing, wherein 

users typically have a choice of various 

buttons and menus. Ratproxy, on the 

other hand, simply waits to see what the 

user does next in the browser.

Because Ratproxy does not cause a no-

ticeable increase in network traffic, it 

even lets you check applications that are 

deployed in production environments. 

(Other scanners launch DOS or cross-site 

scripting attacks that are likely to bring a 

production system to its knees.)

Deploying Ratproxy is simple: Just 

download the source code from the 

homepage and run make to build the 

dozen or so source files. The tool does 

not require a configure script or have any 

major dependencies. What you do need 

are the libcrypto and libssl libraries (typ-

ically supplied as part of the OpenSSL 

distribution) and corresponding headers.

Starting the test tool is slightly more 

complicated: No fewer than 22 parame-

ters (Table 1) govern the nature and 

scope of the tests Ratproxy performs. 

The parameters are also re-

sponsible for defining the level 

of detail to output. To avoid 

being plowed under in an ava-

lanche of messages when you first 

launch the program, start with the de-

fault settings:

./ratproxy -v /tmp -w 

ratproxy.log -d 

mydomain.com -lfscm

This command points Ratproxy at 

the web application in the mydomain.

com domain. Ratproxy will ignore any 

URLs not on this server. (This approach 

is a way of making sure that Ratproxy 

will not run off and accidentally test ex-

ternal ad sites.) The http traffic sniffed 

by Ratproxy is dumped into a multitude 

of tiny files in the temporary directory 

(-v /tmp), whereas the analysis of the re-

sults – that is, the information you are 

actually interested in – is stored in rat-

proxy.log. The Ratproxy Parameters box 

explains the Pandora’s box of command-

line options.

If you prefer a full broadside, you can 

change the parameters as follows:

./ratproxy -v /tmp 

-w ratproxy.log -d 

mydomain.com -lextifscgjm

Google’s Ratproxy is a free testing tool that searches for security problems in 

web applications. BY TIM SCHÜRMANN

Ratproxy’s interactive orientation has 

several benefits, but it is also the tool’s 

major deficiency. If the user does not ex-

ecute a function, Ratproxy does not test 

it. Before you launch Ratproxy, you 

should think carefully about which parts 

of the web application you want to test – 

and in which order.

Shadowing the User

Ratproxy

56 ISSUE 101 APRIL 2009

056-058_ratproxy.indd   56 11.02.2009   15:52:03 Uhr



The optional duo -XC (note the upper-

case letter in the command name), re-

leases Ratproxy from its passive role. 

Once released, Ratproxy will check to 

see how well your web application with-

stands XSS and XSRF attacks (-X), and it 

will repeat requests with modified pa-

rameters (-C).

If the web application returns Flash 

objects, Ratproxy can disassemble and 

analyze them. Ratproxy relies on the 

Flare ActionScript decompiler for this; 

unfortunately, Flare is only available as 

a prebuilt closed source application. By 

default, Ratproxy supports execution on 

x86 processors. A version for 64-bit 

Linux is available on the Flare homepage 

[4]. First you must download the file, 

unpack it, and store the results in 

flare-dist.

Once you see the message Accepting con-

nections on port 8080/ tcp (local only), 

you know that the test tool is listening 

on port 8080 for incoming browser re-

quests. The next step is to set up the 

browser to direct all communications via 

Ratproxy. The easiest way of doing this 

is to enter this port as a proxy on your 

own machine (127.0.0.1 or localhost) 

(Figure 1).

This tells the browser to forward all re-

quests to localhost:8080, where Ratproxy 

will analyze the requests 

before passing them on 

to the web application 

(Figure 2). Because the 

test tool sniffs traffic pas-

sively, all of this is abso-

lutely transparent and 

has only a minimal effect 

on execution speed. The 

-X and -C parameters, 

however, are an excep-

tion to this rule. They tell 

Ratproxy to switch to 

“disruptive mode” and actively interfere 

with communications. (The effects of 

these parameters will vary.)

If you use a genuine proxy to access 

the web, which is the case in many cor-

porate environments, you need to pass 

the -P host:port parameter to Ratproxy, in 

which host and port represent the data 

for your proxy. This feature means you 

can deploy Ratproxy as part of a chain of 

other test tools.

The next step is to access the web appli-

cation in your browser and work in the 

normal way. To avoid interference from 

other sources, Google recommends clos-

ing all other browser windows and flush-

ing the browser cache before you start. 

Ratproxy will now monitor all your ac-

tions and log them in ratproxy.log.

In the case of SSL-encrypted data, Rat-

proxy will replace the certificate served 

up by the web application with its own. 

A good browser will alert you to this. To 

carry on with the test, you must accept 

the new certificate. The Ratproxy docu-

mentation [1] warns against storing the 

certificate permanently in your browser. 

After all, everyone who downloads Rat-

proxy knows the certificate. Because Rat-

Parameter Meaning

-l  By default, Ratproxy uses checksums to compare websites. The -l parame-

ter enables a less strict method.

-f  Ratproxy will also inspect Flash applications; if you set the -v parameter, it 

disassembles them for a more detailed analysis.

-s All POST requests are dumped to the logfile.

-c  Remembers pages that set cookies, independently of whether this repre-

sents a security risk.

-m  Ratproxy records all content outside of the test domain. Without this pa-

rameter, only remotely linked scripts and style sheets are logged. This as-

sumes that you set the -d parameter.

-e Inspects caching more closely.

-x Logs all URLs that could be useful for further (manual) XSS tests.

-t  By default, Ratproxy logs any directory traversal vulnerabilities . This pa-

rameter allows less likely candidates that you could use for manual analy-

sis.

-i  Logs all PNG files returned; PNG files have been misused for XSS attacks 

in the past (older versions of Internet Explorer are prone to this in particu-

lar).

-g Extends the XSRF tests to include GET requests.

-j Enables detection of risky JavaScript constructions such as eval() calls.

-X  Ratproxy switches to active mode and tests web applications for vulnera-

bility to XSS and XSRF attacks.

-C Ratproxy repeats some requests with modified parameters.

A complete and comprehensive list of parameters is itemized in the documentation [1].

Table 1: Ratproxy Parameters

Ratproxy

57ISSUE 101APRIL 2009

056-058_ratproxy.indd   57 11.02.2009   15:52:04 Uhr



proxy forces a certificate on you, another 

problem appears: Ratproxy negotiates all 

further steps with the web application, 

so you can’t be 100 percent certain that 

you are talking to your own server. 

Thus, you should avoid using critical 

(administrative) accounts or entering 

sensitive data while being monitored by 

the tool.

On top of this, you should resist the 

temptation to use wget to feed the web-

site to Ratproxy. Most of Ratproxy’s tests 

rely on user interaction and would sim-

ply be dropped in the case or a wget 

command.

Pressing Ctrl+C terminates the Ratproxy 

test. The results of the analysis land in 

the slightly cryptic ratproxy.log file, 

which is designed for easy machine 

readability and for cooperation with grep 

(Figure 3). Until new tools appear, you 

can use the ratproxy-report.sh script to 

generate a more intuitive HTML report:

./ratproxy-report.sh 

ratproxy.log > 

report.html

The report looks like that in Figure 4: 

The list presents the problems identified 

by Ratproxy, sorted by type and impor-

tance. Critical security risks are high-

lighted with a neon red HIGH. Toggle 

shows or hides the messages in a spe-

cific section, and view trace opens the 

trace (i.e., the sniffed communications) 

from the tmp directory.

At this point, the user is left to inter-

pret the results. To do so, you need ex-

pert knowledge of both computer secu-

rity and forensics and details of the ap-

plication you are testing. After all, it 

makes little sense for Ratproxy to warn 

you about a potential cross-site scripting 

risk if you are unable to close the gap. In 

other cases, Ratproxy lists generic issues 

that do not necessarily represent a secu-

rity risk.

Because Ratproxy works entirely autono-

mously, you cannot inject your own test 

data into the web application to confirm 

your suspicions. Ratproxy can only re-

port on the vulnerabilities it detects in 

the parts of the web application it actu-

ally investigates. (See the box titled 

“What the Rat Catcher Reveals.”) The 

developers are aware that their product 

is not perfect, and they ask for sugges-

tions, improvements, and details of any 

security issues Ratproxy fails to identify.

Remember that Ratproxy is still beta. 

Don’t be surprised to see some false pos-

itives, and don't rely on Ratproxy to the 

exclusion of all other tools. If you are 

willing to work around the quirks, Rat-

proxy it is still a useful addition to your 

security testing toolbox.

Ratproxy is still far from being a pana-

cea. It does not give you a full list of un-

resolved vulnerabilities, nor does it help 

you resolve the issues it detects. Inter-

preting the results requires expert 

knowledge of web security.

What Ratproxy does do is reliably 

point you in the direction of potential is-

sues, vulnerabilities, and poor code. If 

Google continues to refine its tool and 

can attract third-party vendors to dock at 

Ratproxy’s open interfaces, Ratproxy 

could develop into a test jewel for web 

applications.  p

Ratproxy checks the dialog for the fol-

lowing:

-

rect use of MIME types (e.g., has a GIF 

image been served up as image/jpeg?)

JSON and similar data formats

vectors; Ratproxy focuses in particular 

on embedded security tokens and pre-

dictable URLs

-

jection

-

structions

The messages.list file supplied with the 

source code archive gives you details of 

the problems Ratproxy logs.

What the Rat Catcher 
Reveals

[1]  Ratproxy:  

http://  code.  google.  com/  p/  ratproxy

[2]  Chorizo: https://  chorizo-scanner.  com

[3]  Burp Suite:  

http://  portswigger.  net/  suite

[4]  Flash decompiler Flare:  

http://  www.  nowrap.  de/  flare.  html

INFO

Ratproxy

58 ISSUE 101 APRIL 2009

056-058_ratproxy.indd   58 11.02.2009   15:52:05 Uhr


