KNOW-HOW Ratproxy

The Ratproxy security scanner looks for vulnerabilities in web applications

RAT CATCHER

Google’s Ratproxy is a free testing tool that searches for security problems in

web applications. BY TIM SCHURMANN

everal test suites help you look

for vulnerabilities in web-based

applications [1] [2], but many of
these applications are expensive or diffi-
cult to use. Wouldn’t it be nice just to
press a button to find out what vulnera-
bilities exist in your own software -
along with a line reference to help you
find the problems in the source code?

Ratproxy [1] is a tiny but powerful tool
with a simple approach to searching for
problems in web applications. The Rat-
proxy security testing tool originated in
the development labs Google, where it
was created to test Google’s own appli-
cations. In July 2008, the company de-
cided to release the current version to
the general public under the Apache Li-
cense 2.0.

Google describes Ratproxy as a “semi-
automatic, largely passive web applica-
tion security audit tool.” Lurking behind
this cryptic description is a tool with a
simple purpose: Ratproxy sniffs commu-
nications between the browser and the
application, logging the data stream and
checking the log for known issues, risks,
and vulnerabilities. Developers can
launch Ratproxy and watch the output.
Ratproxy reaches places that competitive
products find difficult to access. For ex-
ample, other tools might find it hard to
reach password-
protected
areas, or

56

(8
& &
<&

they could stumble over

some forwarding scenarios. In the same
way, Ratproxy cleverly works around
Javascript issues. Legacy test tools em-
ploy guess work to discover which func-
tion will be used next. This problem oc-
curs particularly in GUI testing, wherein
users typically have a choice of various
buttons and menus. Ratproxy, on the
other hand, simply waits to see what the
user does next in the browser.

Because Ratproxy does not cause a no-
ticeable increase in network traffic, it
even lets you check applications that are
deployed in production environments.
(Other scanners launch DOS or cross-site
scripting attacks that are likely to bring a
production system to its knees.)

Setting the Mousetrap
Deploying Ratproxy is simple: Just
download the source code from the
homepage and run make to build the
dozen or so source files. The tool does
not require a configure script or have any
major dependencies. What you do need
are the libcrypto and libssl libraries (typ-
ically supplied as part of the OpenSSL
distribution) and corresponding headers.
Starting the test tool is slightly more
omplicated: No fewer than 22 parame-
ters (Table 1) govern the nature and
scope of the tests Ratproxy performs.
The parameters are also re-
¢ 0 o sponsible for defining the level
® of detail to output. To avoid
o being plowed under in an ava-
® lanche of messages when you first
launch the program, start with the de-
fault settings:

. /ratproxy -v /tmp -w 2
ratproxy.log -d 2

mydomain.com -1fscm

APRIL 2009

\‘ -
%
N

This command points Ratproxy at
the web application in the mydomain.
com domain. Ratproxy will ignore any
URLSs not on this server. (This approach
is a way of making sure that Ratproxy
will not run off and accidentally test ex-
ternal ad sites.) The http traffic sniffed
by Ratproxy is dumped into a multitude
of tiny files in the temporary directory
(-v /tmp), whereas the analysis of the re-
sults - that is, the information you are
actually interested in - is stored in rat-
proxy.log. The Ratproxy Parameters box
explains the Pandora’s box of command-
line options.

If you prefer a full broadside, you can
change the parameters as follows:

. /ratproxy -v /tmp 2
-w ratproxy.log -d 2

mydomain.com -lextifscgjm

Shadowing the User

Ratproxy’s interactive orientation has
several benefits, but it is also the tool’s
major deficiency. If the user does not ex-
ecute a function, Ratproxy does not test
it. Before you launch Ratproxy, you
should think carefully about which parts
of the web application you want to test —
and in which order.

Ratproxy KNOW-HOW

Firalos Profonuiscas

=5 2

5 i = 4
Tabs Conteck Apphcatiers Privady Secorty | Advinted

General | Natwork Update Encription

Connection

Configuire Prowies to Access the Internet
b e
Autordetect prosgy sattings for this nebaork
ke Gy prosy setlings

® Manunl provy corfigurst oo

U= thin -v"D!}'“rwchrul pratocels

L Pramy fary | |
Exrnple. rrmla.ony metnz, 1 1651 024
Butornatic prosy configuration LELT

0tk

Ocancel | | glex |

Figure 1: To point Firefox to Ratproxy, first select Edit | Set-
tings in the main menu; select Advanced, choose the Network
tab, and click on the Settings button. In the Connection Set-
tings dialog box, enable Manual proxy configuration, and type

the settings for the proxy configuration.

The optional duo -XC (note the upper-
case letter in the command name), re-
leases Ratproxy from its passive role.
Once released, Ratproxy will check to
see how well your web application with-
stands XSS and XSRF attacks (-X), and it
will repeat requests with modified pa-
rameters (-C).

If the web application returns Flash
objects, Ratproxy can disassemble and
analyze them. Ratproxy relies on the
Flare ActionScript decompiler for this;
unfortunately, Flare is only available as
a prebuilt closed source application. By
default, Ratproxy supports execution on
x86 processors. A version for 64-bit
Linux is available on the Flare homepage
[4]. First you must download the file,
unpack it, and store the results in
flare-dist.

Connected

Once you see the message Accepting con-
nections on port 8080/tcp (local only),
you know that the test tool is listening
on port 8080 for incoming browser re-
quests. The next step is to set up the
browser to direct all communications via
Ratproxy. The easiest way of doing this
is to enter this port as a proxy on your
own machine (127.0.0.1 or localhost)
(Figure 1).

This tells the browser to forward all re-
quests to localhost:8080, where Ratproxy

=B satrngs,
& o Hiw

| Expapthord..,

localhost

will analyze the requests
before passing them on
to the web application
(Figure 2). Because the
test tool sniffs traffic pas-
sively, all of this is abso-
lutely transparent and
has only a minimal effect
on execution speed. The
-X and -C parameters,
however, are an excep-
tion to this rule. They tell
Ratproxy to switch to
“disruptive mode” and actively interfere
with communications. (The effects of
these parameters will vary.)

If you use a genuine proxy to access
the web, which is the case in many cor-
porate environments, you need to pass
the -P host:port parameter to Ratproxy, in

Figure 2: Ratproxy sniffing traffic.

can deploy Ratproxy as part of a chain of
other test tools.

Throughput

The next step is to access the web appli-
cation in your browser and work in the
normal way. To avoid interference from
other sources, Google recommends clos-
ing all other browser windows and flush-
ing the browser cache before you start.
Ratproxy will now monitor all your ac-
tions and log them in ratproxy.log.

In the case of SSL-encrypted data, Rat-
proxy will replace the certificate served
up by the web application with its own.
A good browser will alert you to this. To
carry on with the test, you must accept
the new certificate. The Ratproxy docu-
mentation [1] warns against storing the
certificate permanently in your browser.

which host and port represent the data
for your proxy. This feature means you

Parameter

After all, everyone who downloads Rat-
proxy knows the certificate. Because Rat-

Table 1: Ratproxy Parameters

Meaning

By default, Ratproxy uses checksums to compare websites. The -/ parame-
ter enables a less strict method.

-f Ratproxy will also inspect Flash applications; if you set the -v parameter, it
disassembles them for a more detailed analysis.

-S All POST requests are dumped to the lodfile.

-Cc Remembers pages that set cookies, independently of whether this repre-
sents a security risk.

-m Ratproxy records all content outside of the test domain. Without this pa-
rameter, only remotely linked scripts and style sheets are logged. This as-
sumes that you set the -d parameter.

-e Inspects caching more closely.

-X Logs all URLs that could be useful for further (manual) XSS tests.

-t By default, Ratproxy logs any directory traversal vulnerabilities . This pa-
rameter allows less likely candidates that you could use for manual analy-
sis.

-i Logs all PNG files returned; PNG files have been misused for XSS attacks
in the past (older versions of Internet Explorer are prone to this in particu-
lar).

-g Extends the XSRF tests to include GET requests.

-f Enables detection of risky JavaScript constructions such as eval() calls.

-X Ratproxy switches to active mode and tests web applications for vulnera-
bility to XSS and XSRF attacks.

-C Ratproxy repeats some requests with modified parameters.

A complete and comprehensive list of parameters is itemized in the documentation [1].

APRIL 2009

ISSUE#

57

KNOW-HOW

Ratproxy

Doter Bearbeten Anmcht Chronk Lesezeichen Exiras HiFs

Ble Edt wiew Eeath Iyoh poouments Hel

@ v P B & 2[5 Homamereratpreyropatt himi 1= =
i b 1
!in’.u Open s:m Print..; Paste | FAnd - Replate Rutproxy aude report
ratprosyleg. @ |

(enerated o FOOWTUTT O3S -

G
I”‘Sj;pfox

{lawe, Finirg
1HIXT

(il 1/Bad or re charsat declared for rendar | 290] 2040 taxtess| spplications. javascript] - |/

| trp/ 4318177 -2R54. Erace| GET | hitkps //Local host s 80/ aduini st rator tenplates khep ri foss/oginuess] -] - | Foor

| An# @version $ld: Logincss 9763 2007-12.30 00:15:487 ircnansll $,rind @cepyright Copyright () 2005 -
| 200 Open Source Matters. AL rights reserved.drin® dlicsnss QUL see LICENSE.phpirin? doonlal is

| fros sof twars. This varsion nay have moddifige pursuatyrin to the G General Public Licerse, and
Lo distributed it includes oryrin® 1s derivative of works licermed under the G General Public Ligerse
|orirind othar fres or open sorce sof twars Licemmes. '\ rind See COPYRAICHT_phe for copyright notices and

| et L WP A rn T © Joonlal 1.9 Adoin tenplate main css filsirin #rin * @suthorytitiedy

[Miller &¥ed3ciandy mllard)joonla. orgii3e;rin + fpackage)ritleonlairin + dsincelEhtl Shrin + drersion
FL.Ovrn S\ e - - Tportesd styles <o - roioioioiio o
| (a2 germral csabn s) gt -« Specific sityles -

iR nELepert url e
................ apurnferm Megort risk and risk modler Sssigeaiions:

Inmus urgercy cheaficriion iomposila of mpact and dentficafion

:::'.t(nargin: pis pedding: pxs Firinform dirputhos [wi & margin-Lefts 109 Firinfarm br [1 o | P

|11 1IMIFE type mhonateh on renderabls file - | 200] 2083] tort e] application/ - javasc ript] - ¢ = Nom- ety sy | uher malyein

| trp 18 1772786 tracs| GET | httpe s Lecalhost a0/ sdanistrator/ tenpLates hhepri jess Login_css] - | - |+ r =] Dury paimmaans sehosd back | nol achive In HTTF rasponss,

| \n* Gversion 30d; Login.css 9708 2007-12-30 03:15: 857 i renanell $4rin® Boopyright Copyright (G} 2003 - respesiiioly

| 2008 Opsn Seurce Hattars. ALL rights ressrved.irin® dlicerse ol/0PL, ses LICENSE phpirind Josalal is iy Fluaet IFL tr quary duta Bhisky i | 18 ol prackeratia b el patias,
| fres wofteare. This version may have besn nodified pursusntirin® to the @ General Public Licerms, snd respeclively

| distributed 1t includes aryrint is darivative of works Licenssd Under tha Ol Gereral Foblic Licenss] 4
Loririn® other fres or open source =of twars Ticensss.\rin® See COPYRIGHT.phe for copyright netices and

| detal Lsur A AL Pt e+ Jooalal 1.5 Admin teoplate main css filaven #urin # galthority ey

| Hiller s¥e3csandy.mill=r@joonla,orgiérde;irin * gpackageititlocnlatrin 4 dsinceibitlFirin * @ersion
-0 rin #0 i+ - Tnported SEyles veeererereneiersisnnen PP et url

| $aaz2rgeneral conmgbn22i) A\ AT - - SpeciFic mtyles - rerorsre oo e o artrnforn E
| vpitl marging Opis paddings dpa: Birinforn cirputbor [width: & margin-lefts 1ope; Pirinform br
ks

1201 Tline. PG imagel + | 20| 36951 nigeipoal Lnige poal + | ey A618C177- 2784 £ race] OETIHittps / flocalhoat 80/

Fliseet ey | st ok ragyiva ek ibertieation, mspanti dy

POST quary with no XSRF prolection w:..

| i strator Ftenplateskhepr fimagesh_greeny) _beeder_middle .prgl - | - FakaEnimiG rinielain +1

2.1 5.1 EN

Figure 3: Ratproxy’s logfile is not exactly intuitive.

proxy forces a certificate on you, another
problem appears: Ratproxy negotiates all
further steps with the web application,
so you can’t be 100 percent certain that
you are talking to your own server.

Thus, you should avoid using critical
(administrative) accounts or entering
sensitive data while being monitored by
the tool.

On top of this, you should resist the
temptation to use wget to feed the web-
site to Ratproxy. Most of Ratproxy’s tests
rely on user interaction and would sim-

What the Rat Catcher

Reveals

Ratproxy checks the dialog for the fol-
lowing:

standards compliance, such as the cor-
rect use of MIME types (e.g., has a GIF
image been served up as image/jpeg?)

insecure responses, particularly with
JSON and similar data formats

cross-site scripting (XSS) attack vectors

cross-site request forgery (XSRF) attack
vectors; Ratproxy focuses in particular
on embedded security tokens and pre-
dictable URLs

data injection vectors, such as SQL in-
jection

risky JavaScript, OGNL and Java con-
structions

incorrect use of cookies

suspicious Flash objects

directory traversal vectors

incorrect use of caching
* suspicious redirects

The messages.list file supplied with the
source code archive gives you details of
the problems Ratproxy logs.

58

ISSUE#

ply be dropped in the case or a wget
command.

The Showdown

Pressing Ctrl + C terminates the Ratproxy
test. The results of the analysis land in
the slightly cryptic ratproxy.log file,
which is designed for easy machine
readability and for cooperation with grep
(Figure 3). Until new tools appear, you
can use the ratproxy-report.sh script to
generate a more intuitive HTML report:

. /ratproxy-report.sh 2
ratproxy.log > 2
report.html

The report looks like that in Figure 4:
The list presents the problems identified
by Ratproxy, sorted by type and impor-
tance. Critical security risks are high-
lighted with a neon red HIGH. Toggle
shows or hides the messages in a spe-
cific section, and view trace opens the
trace (i.e., the sniffed communications)
from the tmp directory.

At this point, the user is left to inter-
pret the results. To do so, you need ex-
pert knowledge of both computer secu-
rity and forensics and details of the ap-
plication you are testing. After all, it
makes little sense for Ratproxy to warn
you about a potential cross-site scripting
risk if you are unable to close the gap. In
other cases, Ratproxy lists generic issues
that do not necessarily represent a secu-
rity risk.

Conclusions

Because Ratproxy works entirely autono-
mously, you cannot inject your own test

APRIL 2009

Figure 4: Ratproxy provides a report with results of the testing.

data into the web application to confirm
your suspicions. Ratproxy can only re-
port on the vulnerabilities it detects in
the parts of the web application it actu-
ally investigates. (See the box titled
“What the Rat Catcher Reveals.”) The
developers are aware that their product
is not perfect, and they ask for sugges-
tions, improvements, and details of any
security issues Ratproxy fails to identify.

Remember that Ratproxy is still beta.
Don’t be surprised to see some false pos-
itives, and don't rely on Ratproxy to the
exclusion of all other tools. If you are
willing to work around the quirks, Rat-
proxy it is still a useful addition to your
security testing toolbox.

Ratproxy is still far from being a pana-
cea. It does not give you a full list of un-
resolved vulnerabilities, nor does it help
you resolve the issues it detects. Inter-
preting the results requires expert
knowledge of web security.

What Ratproxy does do is reliably
point you in the direction of potential is-
sues, vulnerabilities, and poor code. If
Google continues to refine its tool and
can attract third-party vendors to dock at
Ratproxy’s open interfaces, Ratproxy
could develop into a test jewel for web
applications. H

[1] Ratproxy:
http://code.google.com/p/ratproxy

[2] Chorizo: https://chorizo-scanner.com

[3] Burp Suite:
http://portswigger.net/suite

[4] Flash decompiler Flare:
http.//www.nowrap.de/flare.htm|

