
Two-factor authentication is a sys-
tem in which two different fac-
tors are used in combination to

authenticate a user. Two factors, as op-
posed to one factor, will deliver a higher
level of authentication assurance. The
combined factors could consist of:
• Something the user knows (password

or pin)
• Something the user possesses (smart-

card, PKI certificates, RSA SecurID)
• Something the user is or does (finger-

print, DNA sequence)
The first option is the easy choice. Pass-
words are used everyday for a multitude
of purposes. The third option is usually
some sort of biometric – not a good
choice for the web environment. “Some-
thing the user possesses” is the best sec-
ond factor for authentication. Almost all
web-based, two-factor authentication so-
lutions available today involve some
form of hardware token, such as the RSA
SecurID. Distributing these tokens to
users is neither cost effective nor scal-
able in price. A company might be able
to afford tokens for 1,000 users, but one

good blog post and they could find
themselves with 30,000 new users over-
night. Requiring users to obtain a hard-
ware token on their own is too much
work for the vast majority of users. In
addition, tokens have to be synced with
special server software, which can often
require a proprietary license.

A less expensive and more scalable al-
ternative for two-factor authentication
on the web is a one-time password
(OTP) system. The November 2008 issue
of Linux Magazine offered an introduc-
tion to OTPs [1] that focused primarily
on workstation authentication; however,
tasks like checking a bank account from
an untrusted network scream for some
form of two-factor authentication, and
an OTP system is often a practical solu-
tion. In this article, I describe how to
add the security of OTPs to your website.

OTP on the Web
RFC 2289 [2] defines an OTP system de-
rived from Bellcore S/ KEY technology
(RFC 1760). If implemented correctly, it
provides a cost-effective, two-factor au-

thentication solution for websites. Imag-
ine that a help desk technician with ad-
ministrative privileges for a website hits
an administrative page that generates a
wallet-sized list of 30 OTP number/ key
pairs. The list is then hand delivered to
the user. This password list now be-
comes something the user possesses –
the second factor – and because it was
never transmitted electronically, it pro-
vides an added level of security. If the
site doesn’t mind electronic transmission
within its trusted domains, the admin
might fax or even email the list to the
user. From a cafe in Amsterdam, for ex-
ample, the user can now enter a conven-
tional username and password. If this
initial authentication is successful, the
server poses a challenge that requires a
response with the correct corresponding
OTP. After this login, the OTP is immedi-
ately invalidated for future use, which
means it will never be used for a replay
attack. For the next login, the user will
enter the next OTP on the password list.

By forcing the user to authenticate
through a pair of dissimilar mechanisms,

add security to your website with a one-time password system. BY JAMES A. BARKLEY

Implementing a one-time password system on the web

DOUBLE PROTECTION

M
arvin Ristau de, Fotolia

One-Time Passwords on the WebCOver sTOry

32 ISSUE 99 FEBRuaRy 2009

two-factor authentication pro-
vides a much more secure alter-
native for web login. This basic
scenario leads to endless varia-
tions. For instance, a user could
associate a cell phone number
with the account; then, when
logging in, the system could
send the OTP in a text message.
Or, a user could generate OTP
passwords from a program run-
ning on a PDA. An added advan-
tage of this scenario is that the
implementation can give the
OTP a temporal component so
that it times out after 60 sec-
onds, much like the RSA Secu-
rID, although this would require
the user synchronizing the PDA
application with the server.

OTP Tools
A plethora of OTP libraries exist for SSH,
console, and network logins, with plenty
of OTP libraries for more exotic tools like
SquirrelMail and PalmPilots, but finding
open source libraries for OTP authentica-
tion in a web environment is difficult.
One RFC 2289–compliant OTP system
that has been tested and released under

the GPL is the OTPauth PHP library [3].
OTPauth, which uses the SHA1 hashing
algorithm, has been employed success-
fully by a site with several hundred users
for over two years. Another PHP library,
otp, is available from SourceForge [4].
The otp developers hope to have a demo
up and running soon.

Various Java tools assist with the task
of constructing and validating OTPs [5],
but I am not aware of a complete web li-
brary (e.g., something that integrates a
full challenge/ response implementation
into a j2ee application).

The Google AuthSub library [6] allows
authentication with Google applications

COver sTOryOne-Time Passwords on the Web

33ISSUE 99FEBRuaRy 2009

01 #loads mod_auth_mysql shared object library

02 LoadModule mysql_auth_module modules/mod_auth_mysql.so

03

04 #tells mod_auth_mysql how to connect to your auth database,
parameters are:
#Auth_MySQL_Info hostname user password

05 Auth_MySQL_Info localhost auth_db_user myP@ssw0rd

06

07 ?redirects failed logins to rejection page

08 ErrorDocument 401 /chapter14/rejection.html

09

10 #defines MySQL tables and columns for authenticating

11 AuthName "My Web Site"

12 AuthType Basic

13 Auth_MySQL_DB auth_db

14 Auth_MySQL_Encryption_Types MySQL

15 Auth_MySQL_Password_Table user

16 Auth_MySQL_Username_Field user_name

17 Auth_MySQL_Password_Field user_pw

18

19 require valid‑user

Listing 2: Adding mod_auth_mysql to httpd.conf

01 CREATE TABLE user (

02 user_id int(11) NOT NULL AUTO_INCREMENT,

03 user_name text NOT NULL,

04 user_pw varchar(32) NOT NULL DEFAULT '',

05 realname varchar(32) NOT NULL DEFAULT '',

06 STATUS char(1) NOT NULL DEFAULT 'A',

07 add_date int(11) NOT NULL DEFAULT '0',

08 confirm_hash varchar(32) DEFAULT NULL,

09 phone_number varchar(20) NOT NULL DEFAULT '',

10 last_pw_change int(11) NOT NULL DEFAULT '0',

11 otp_enabled tinyint(1) NOT NULL DEFAULT '0',

12 PRIMARY KEY (user_id),

13) TYPE=MyISAM;

14

15 CREATE TABLE session (

16 user_id int(11) NOT NULL DEFAULT '0',

17 session_hash char(32) NOT NULL DEFAULT '',

18 ip_addr char(15) NOT NULL DEFAULT '',

19 otp_auth tinyint(1) NOT NULL DEFAULT '0',

20 time int(11) NOT NULL DEFAULT '0',

21 locked tinyint(1) NOT NULL DEFAULT '0',

22 PRIMARY KEY (session_hash),

23) TYPE=MyISAM;

24

25 CREATE TABLE otp (

26 user_id int(11) NOT NULL DEFAULT '0',

27 sequence int(11) NOT NULL DEFAULT '0',

28 otp char(60) NOT NULL DEFAULT '',

29 PRIMARY KEY (session_hash),

30) TYPE=MyISAM;

Listing 1: Example Authentication Database

Figure 1: An OTP web login scenario.

SSL

No

No Retrieve/compare OTP hash

Yes

Retrieve Secure IP List

Retrieve/compare user/pass hash

Yes

MySQL_Auth

Mod_php

Apachedie
with error

Application
Code Module

User/pass
authenticated?

Apache

OTP Challenge
Code Module

Request from
Secure IP?

PHP MySQL

Enterprise DB

Authentication DB

Internet

Web Server

via secure tokens. Although AuthSub is
not a strictly RFC 2289–compliant OTP
solution, it does allow secure, one-time
token-style authentication for Google ap-
plications. It will be interesting to see
whether Google continues to develop
this solution or migrates completely to
OAuth. A handful of other software
packages provides a customized OTP so-
lution exclusively for their software,
such as a plugin for the Joomla CMS [7].

Here, I describe how to set up an OTP
system with the open source OTPauth li-
brary. The other tools operate on similar
principles. If you are interested in ex-
ploring one of the alternatives, see the
documentation at the project website.

A Look at self-service OTP
Imagine a bank that wants to encourage
good security practices but cannot insist
on universal two-factor authentication
without scaring away half of its custom-
ers. The bank wants a system that sup-
ports the OTP option for early adopters
without endangering the business model

by forcing constraints on the
unwilling.

The solution must provide
the means for a user to visit
a preferences page and spec-
ify that the program require
two-factor authentication
when logging on to the ac-
count from a computer other
than that currently being
used. The user then gener-
ates a personal, wallet-sized
list of 30 OTP number/ key
pairs from the user prefer-
ences page. The next time
the user accesses the ac-
count from an untrusted location, say a
friend’s house, the user will be asked to
provide an OTP along with the conven-
tional username and password.

The first step is to provide basic au-
thentication with a username and pass-
word. Great libraries and standard meth-
odologies provide basic authentication,
whether you want to use .htaccess files
with Apache, validate off of a database

at the application layer, or let Apache
validate the user with mod_auth_mysql.
Because I like to provide security con-
trols at multiple layers, I will use the ar-
chitecture shown in Figure 1.

The authentication database is stored
separately from the enterprise database
and holds the username, password, and
OTP information. Listing 1 shows
MySQL CREATE statements that contain

One-Time Passwords on the WebCOver sTOry

34 ISSUE 99 FEBRuaRy 2009

01 <?php

02

03 ...

04 ...

05

06 //retrieve user id from global set by Apache

07 //or similar mechanism

08 $uid = user_getid();

09

10 //setup user session

11 $session = user_getsession($uid); //attempt to retrieve
session from db

12 if (!$session) {

13 $session = user_create_session($uid); //create entry in
session table

14 }

15

16 //check to see if user is already authenticating

17 //this prevents RFC 2289 specified race condition

18 while ($session['locked']) {

19 /* spin until lock is released or timeout happens */

20 $session = user_getsession($uid);

21 if (spinlock_timeout_reached()) {

22 header("Location: http://www.example.com/retry.php");

23 exit;

24 }

25 }

26

27 //lock account while authenticating

28 set_session_lock($uid); //sets "locked" flag on session
table

29

30 //check if otp auth has been enabled on account

31 //user_getotpauth() performs database query and returns

32 //otp_enabled flag from user table

33 $otp_auth_enabled = user_getotpauth($uid);

34

35 if ($otp_auth_enabled) {

36 if ($session['otp_auth']) {

37 /* success, user has already authenticated with otp */

38 } else {

39 /* user has logged in but not otp auth'd */

40

41 //untrusted_host() compares the IP of the current

42 //session with the user's specified trusted list

43 if (trusted_host($uid)) {

44 /* user is coming from address which won't require OTP
auth */

45 } else {

46 /* user must otp auth */

47 header("Location: http://www.example.com/otp_auth.
php");

48 exit;

49 }

50 }

51 }

52

53 //in all but otp required case

54 //the user ends up here

55 //release lock and proceed to page‑specific code

56 unset_session_lock($uid);

57

58 ...

59 ...

60

61 ?>

Listing 3: PHP OTP Logic

Figure 2: Logging in with a one-time password.

all the information needed for the entire
authentication database, which mod_
auth_mysql checks for the username and
password. First you need to download
mod_auth_mysql or get it from your
package manager [8]. Once you have it
installed, configure it by adding the lines
from Listing 2 to your httpd.conf file. Re-
member to customize the settings for
your website.

Now you can add code at the applica-
tion layer to check for OTP authentica-
tion. The user will never get to the appli-
cation without entering the correct user-
name and password, but once done, you
need to make sure a two-factor authenti-

cation option is available. First, the ap-
plication must determine whether the
user has enabled OTP authentication for
the account. If so, the application needs
to compare the current IP address and/
or hostname with those listed on the
user account as trusted. If the user has
not enabled OTP authentication or is
coming from a trusted address, then the
application allows access to the web
page(s) requested. The sample code in
Listing 3 could be included in your appli-
cation pages at the top (in which case, it
is executed first) or moved to a function.

When the user is redirected to the otp_
auth site, your OTP library handles the

OTP challenge/ response. Listing 4 shows
a basic page that presents the challenge
to the user and validates the response to
the challenge. This page is intentionally
sparse because my application is not yet
convinced that this person is authentic.
By not providing all my normal libraries
or JavaScript, or even the look and feel
of my site, I narrow the attack vectors on
this page. The use of a good OTP library
simplifies this application logic to a triv-
ial amount of code with function calls
like valid_otp() and get_otp_seq(). The
code in Listing 4 produces a display sim-
ilar to that shown in Figure 2.

Finally, don’t forget to provide your

COver sTOryOne-Time Passwords on the Web

35ISSUE 99FEBRuaRy 2009

The biggest risk with any security system
would be implementing an architecture
coding mistake. The technical risk is get-
ting hacked; the business risk is getting
sued. To protect yourself, you could write
extensive test cases and have a third party
review the software, or you could choose
an existing implementation proven or
peer-accepted as correct.

architecturally, secure programming re-
quires a number of considerations, many
unique to the existing infrastructure of the
system. The two most important are: 1)
separate your authentication database
from your enterprise database(s) and 2)
separate the username/ password authenti-
cation from the OTP authentication as
much as possible. you want each authenti-
cation element to be clean and almost
stand alone. If you handle username and
password authentication in the same code
library as the OTP authentication, you risk

contaminating the entire authentication
process with cross-code bugs.

another technical vulnerability in any OTP
system is the man-in-the-middle (MITM)
attack vector. If hackers can masquerade as
a website to the user while masquerading
as a user to the website, there is very little
they cannot do. Even with SSL, the MITM
simply makes separate SSL connections
and decides what to send to user and web-
site. Network monitoring can prevent this
type of attack: as the attacker continues to
operate, patterns of errors emerge.

RFC 2289 allows hashing algorithm varia-
tions in OTP generation and authorization
routines. Be sure that a strong hashing al-
gorithm is in use because an intruder that
gains access to your authorization data-
base and hashes the stored tokens with
an insecure algorithm such as MD5 could
generate an infinite list of tokens. at least,
you should use SHa1, although it is not

highly secure. SHa256 is a better solution
but is not available in as many languages,
which means relying on and validating a
third-party library or writing your own. The
RFC also mentions an interesting race con-
dition (see the “Race Condition” box), so
make sure your library is fully compliant.

another concern is social engineering the
help desk staff or users. Sadly, most solu-
tions to that problem are non-technical.
Most systems with help desk staff are sus-
ceptible, including commercial hardware
token-based authentication systems, so
good models to establish identity already
exist. Training or a Terms of Service (TOS)
agreement might be advantageous. In
practice, most places with enough security
requirements to warrant the use of OTP al-
ready require yearly online security train-
ing. This training or TOS also should pro-
hibit the storage of OTP lists with regular
usernames and passwords.

Risk Assessment and Attack Vectors

01 <?php

02 /* LICENSED UNDER THE GPL */

03 # if they have clicked the login button

04 if ($login) {

05 $success = valid_otp($form_challenge_response, 06$user);

06 if ($success) {

07 /* update session/auth state and redirect to system
 resources and exit*/

08 header("Location: http://www.example.com/".$page);

09 exit();

10 }

11 }

12

13 $sequence = get_otp_seq($uid);

14 if ($sequence == ‑1) {

15 /* print error message and exit; */

16 }

17

18 print "

19 <p>

20 <FORM ACTION=\"$PHP_SELF\" METHOD=\"POST\">

21 <p>

22 <INPUT TYPE=\"TEXT\" NAME=\"user\" VALUE=\"$user\">

23 <p>

24 Enter One‑Time Password for Challenge number
 $sequence:

25
<INPUT TYPE=\"TEXT\" NAME=\

 "form_challenge_response\" VALUE=\
 "$form_challenge_response\" SIZE=\"31\">

26 <p>

27 <INPUT TYPE=\"SUBMIT\" NAME=\"LOGIN\" VALUE=\"Login\">

28 </FORM>

29 <P>

30 ";

31 ?>

Listing 4: Sample OTP Authentication Page

users with tools for enabling OTP on
their accounts, generating their OTPs,
and managing their trusted lists. Listing
5 is for a very lightweight page to gener-
ate a spreadsheet of OTPs, but make
sure that when a user enables OTP for
an account, it isn’t logged out before
generating the OTP list first!

Be prepared to have a mechanism for
resetting OTP lists. This could be a re-
sponsive phone/ email/ irc support chan-
nel or an automated page, but either
way, the user will need to provide proof
of identity with something else like a se-
curity question. Also, don’t forget your
additional security checks – none of the
code samples listed here validate input
data, for example.

Not a Token
The RFC 2289 specification for a one-
time password solution can offer true
two-factor authentication; however, it

will never be as secure as a token-based
alternative. For one thing, many of the
token-based solutions require that you
concatenate a private PIN to the OTP to
create the second factor, which greatly
enhances security. Also, the hardware
token solutions are designed to be tam-
per proof, in case someone tries to re-
verse engineer the generating algorithm.
Finally, the token-based tools are time
based and change every minute or so,
which means it is very difficult for an at-
tacker to obtain an OTP a user has not
yet used. With solutions that require an
OTP list, an attacker who gets a snap-
shot of the list (or picks up a lost list on

the subway) has access to future OTP re-
sponses.

The OTP system defined by RFC 2289
offers an open and scalable solution for
web-based authentication. It is even pos-
sible to integrate an OTP system into a
user’s cell phone. Web-based OTP has its
own attack vectors and risks, and a web-
based OTP system will probably never
be quite as secure as hardware-based so-
lutions such as the RSA SecurID. Despite
this, OTP combined with a conventional
web authentication scheme is an excel-
lent candidate for poor man’s two-factor
authentication. n

One-Time Passwords on the WebCOver sTOry

36 ISSUE 99 FEBRuaRy 2009

[1] “Smart access” by udo Seidel,
Linux Magazine, November 2008

[2] RFC 2289: http:// www. apps. ietf. org/
 rfc/ rfc2289. html

[3] OTPauth:
http:// code. google. com/ p/ otpauth/

[4] otp:
http:// sourceforge. net/ projects/ otp/

[5] OTPs in Java:
http:// www. java2s. com/ Code/ Java/
 Security/
 OTPonetimepasswordcalculation.
 htm

[6] Google authSub library:
http:// code. google. com/ apis/
 accounts/ docs/ AuthSub. html

[7] Joomla OTP plugin: http:// code.
 google. com/ p/ joomla‑otp‑auth/

[8] apache mod_auth_mysql module:
http:// modauthmysql. sourceforge.
 net/

[9] Phishing attack on OTPs: http://
 www. theregister. co. uk/ 2005/ 10/ 12/
 outlaw_phishing/

INFO

One race condition exists for the OTP
system. an attacker who is listening
with a keystroke logger while a user is
authenticating might be able to listen to
just enough of the OTP to enable a brute
force attack just before the user finishes
typing, allowing the attacker to log on as
the user before the user finishes authen-
ticating the session. Interestingly, RFC
2289 actually has a provision for this
race condition and requires that it be
guarded against in order for the imple-
mentation to claim full compliance. The
defense outlined in Section 9.0 of the
RFC is to deny multiple simultaneous
sessions. In other words, once a user ini-
tiates the authentication sequence, all
other attempts to authenticate with that
user should be blocked until the authen-
tication process is complete. This could
lead to a denial of service attack, so
some sort of authentication timeout is
necessary.

Race Condition

Implementation of the RFC 2289 specifi-
cation used in OTPauth was written for
PHP4 and also works with PHP5. To im-
plement the spec correctly, a variety of
bitwise operations are necessary. How-
ever, at the time of implementation (and
I don’t think it has changed), specific bit-
wise operations do not work in PHP4.
Things like bit shifting for unsigned
32-bit integers don’t work. PHP4 pro-
vides the operator, but it simply fails
with no error. Therefore, OTPauth pro-
vides a math library to work around
these types of undocumented language
“features.”

Bitwise

James a. Barkley is a Senior Soft-
ware Systems Engineer at the
MITRE Corporation in Bedford, Ma.
Mr. Barkley is working in a variety of
technology areas including Model-
ing and Simulation, PHP and Ruby
on Rails web development, biomet-
ric informatics, server virtualization,
and robotics. MITRE is a not-for-
profit company that manages three
federally funded research and devel-
opment centers (FFRDCs) and a ded-
icated homeland security center,
partnering with government spon-
sors to support their crucial opera-
tional missions. Mr. Barkley began
working with open source software
in 1998. He is the creator of the OTP-
auth PHP library.

T
H

E
 A

U
T

H
O

R

01 $otp_list = generator($uid);

02 /*

03 pretend we're an excel file and let

 excel or oo.calc put the html table cells

 into the right spreadsheet format

04 */

05 header("Content‑Type: application/vnd.ms‑excel");

06 header("Expires: 0");

07 header("Cache‑Control: must‑revalidate, post‑check=0, pre‑check=0");

08

09

10 print "<TABLE BORDER=1>";

11 print "<TH>Sequence number</TH><TH>Password</TH>";

12 while (list($key, $val) = each($otp_list)) {

13 print "<TR><TD>$key</TD><TD>$val</TD></TR>";

14 }

15 print "</TABLE>";

Listing 5: Spreadsheet for Generating OTP List

