

was probably always subtly aware of

the abilities of some free software

programmers, so I should not con-

tinue to be amazed by what they can do.

But I must admit they do continue to

astonish me.

For example, Nick lived a few miles

from my house and started programming

at the age of 9, hacking the Linux kernel

at 12, and writing device drivers at 15.

He was the senior systems administrator

of a small college at 19, and he helped

the United States FBI capture some

crackers by creating a honeypot at col-

lege when he was 21. He then went on

to do research – without ever officially

graduating from high school.

Or there is the 14-year-old who started

his own distribution and had released

20,000 copies before his parents found

out what he was doing. When they

asked why he did not tell them, he sim-

ply answered, “Well, I did not really

need your help.“

A family friend who was not doing so

well in junior high school – armed with

a copy of Running Linux and an early

Linux CD – managed to install Linux to

his system, set up a wireless network in

his house (including Samba support for

his parent’s systems), and teach himself

C programming. He also formed the first

computer club at his high school, came

out of his shell, joined the high school

football team, later taught himself com-

puter security, and is now doing gradu-

ate-level work as an undergraduate.

All of these hackers credited visual ac-

cess to the source code as an important

factor in improving their computer skills.

With free software, few people ask your

age, your sex or sexual persuasion, your

religion, or anything other than, “Where

is the code?” New programmers can

work as far and as fast as they want by

reading other peoples’ code – both good

and bad – and learning from it.

In the mid 1970s there was a college

professor who believed that the best way

to teach programmers how to write good

code was to show them the code of re-

ally good programmers. John Lions man-

aged to comment and annotate the com-

plete listing of the Sixth Edition of Unix

before AT&T changed the licensing with

the Seventh Edition of Unix, which pro-

hibited using the source code for edu-

cational purposes. Fortunately for com-

puter science, a few copies “escaped,”

and that two-volume set of books be-

came on of the most photocopied com-

puter science books of all time.

Unix programmers measured their

time in the computer field by whether

they owned a fifth-generation photocopy

of Lion’s book or just a tenth-generation

photocopy.

Looking at a good programmer’s code

is still a great way to learn the craft. I re-

ally do not understand how a computer

science instructor can advocate using

closed source proprietary software to

teach students when comparable free

software is available.

With proprietary software, you see

what the program does, but not how it

does it. You must trust that the program-

mers did the right thing when they chose

the algorithms for the program. On the

other hand, by teaching how the soft-

ware does the job, you create an on-go-

ing education.

And free software doesn’t just show

you the code – you can also get to know

the programmer. As someone who has

worked on both closed source and free

software, I appreciate the fact that, if I

want to know who wrote a particularly

great program and how that person fits

into a development environment, I can

usually seek out and follow the project’s

mailing list. This strategy allows me to

locate a lot of the really good program-

mers who are rising to the top of their

profession.

This thought leads me to my latest

find and the inspiration for this article. I

recently learned about an undergraduate

student who is participating in what I

consider to be graduate-level work. He

is articulate, he seems to have a wide

range of interests, and he lives in Roma-

nia. Free software’s openness allowed

me to find him, and I hope to work with

him in the future as I have worked – and

continue to work – with the prodigious

coders I mentioned earlier.

I continue to look for the next “Albert

Einstein of computer science,” and I am

not so egotistical to think that this ge-

nius would have to come from the

United States, or even be educated here.

With too many problems to solve and

not enough people to solve them, the

next “Albert” – or “Alberta” – might be

from Brazil, China, Romania, or even

Helsinki, Finland.

What I do know is that free software’s

openness will help us find the next gen-

eration of experts. p

The openness of free software spurs innovation across generations and

time zones. BY JON ‘MADDOG’ HALL

Doghouse: Open Einstein

91ISSUE 96NOVEMBER 2008

091-091_maddog.indd 91 11.09.2008 14:02:59 Uhr

