

ecently, I implemented an Intru-

sion Detection System (IDS) for

a remotely hosted web farm.

After the initial setup, I began testing

and configuring to streamline the sys-

tem. As soon as the system was

switched on, I noticed the sort of traffic

that shouldn’t be internal to a DMZ. The

ISP-controlled firewall had been miscon-

figured to allow almost all traffic.

In the short time the test was running,

the IDS logged a large number of port

scans and access attempts on the main

servers. From these logs, it was obvious

that the servers were receiving the

wrong sort of attention.

The moral of the story is to keep an

eye on your network. Even if you don’t

have a misconfigured firewall, your sys-

tems could benefit from the attention of

an IDS. At the most basic level, an IDS

captures network traffic. Then it com-

pares the contents of these packets

against specific rules to check for known

vulnerabilities or malicious code.

When the IDS discovers something

that matches a rule, it triggers a pre-con-

figured action. The action varies depend-

ing on the configuration, however, in

basic IDS mode, the system simply logs

the offending traffic or sends an alert.

An IDS sensor on the

network perimeter keeps a watchful eye

on traffic that the firewall lets through; a

sensor located outside of the firewall lets

you watch access attempts.

Snort [1] is an open source IDS alter-

native. As with many open source proj-

ects over the past few years, Snort now

has a corporate arm, Sourcefire [2], but

the good news is that Snort is still freely

available under the GPL.

In this article, I describe how to start

watching your network with Snort.

Snort is usually easy to install. Those

with .deb or .rpm package managers

should find Snort in the list of available

software for your distros; however, it

might be an older version.

At this time of writing, the latest ver-

sion is 2.8.0.2. Installing from source

isn’t as easy as setting up Snort with apt-

get, but you’ll have many more options

for customizing your system. To build

Snort, you need to download the source

Search out hidden attacks with the Snort intrusion detection system.

BY CHRIS RILEY

Snort

64 ISSUE 96 NOVEMBER 2008

064-069_snort.indd 64 11.09.2008 15:07:46 Uhr

tarball and, optionally, the MD5 hash to

run a file check.

wget http://www.snort.org/dl/current 5

/snort-2.8.0.2.tar.gz

Optional:

wget http://www.snort.org/dl/current 5

/snort-2.8.0.2.tar.gz.md5

Optional:

md5sum -c snort-2.8.0.2.tar.gz.md5

tar -xvf snort-2.8.0.2.tar.gz

cd snort-2.8.0.2

When the source is uncompressed and

at your mercy, figure out where you

want to store the logs and alerts. Also,

you can always stick with the simple

 option of logging all output to /var/log/

snort/, or you can go the more flexible

and scalable route. Snort supports a

wide range of databases that allow you

to centralize the data easily. The choice

depends on what you want to achieve

and how much traffic you expect to han-

dle. The general rule of thumb is to take

the estimated traffic level and multiply it

by 10. Most of the time, the sheer

amount of traffic takes people by sur-

prise and can easily overload your log-

ging system if you’re not prepared. This

example installs MySQL as the database

back end. If you want to run another da-

tabase, you can build in support through

command switches available in ./config-

ure. To view a full list of the supported

options, run ./configure -h.

./configure --with-mysql

make

sudo make install

If you encounter errors running the build

process, you might be missing some re-

quired headers. In particular, you need

to ensure you have pcre.h, pcap.h,

pcap-bpf.h, and mysql.h present in the

/usr/include directory. If these files are

missing, some of the dependencies

might not be installed properly (Listings

1 and 2). It’s also possible to have issues

with the libpcap.so file. On certain dis-

tros, you need to recreate this symbolic

link by running ln -s /usr/lib/libpcap.

so.<version> /usr/lib/libpcap.so. Once

you’ve run make and sudo make install

cleanly, you’re ready to do some final

touches before heading into the MySQL

database configuration. Before moving

on to the database, create a new user for

Snort. (After all, you don’t want the

 service running as root.) To create a new

user, run the following commands:

groupadd snortgrp

useradd -g snortgrp snortusr

These commands will create the snort-

grp group and the new user snortusr.

 Before continuing, make sure you are in

the directory where you untarred Snort.

The following commands create the re-

quired directories for the Snort configu-

ration, rules, and logfiles, copying the

 required files to the newly created /etc/

snort directory.

mkdir -p /etc/snort/rules

mkdir /var/log/snort

touch /var/log/snort/snort.log

touch /var/log/snort/alert

chown -R snortusr.snortgrp 5

/var/log/snort

cp etc/* /etc/snort/

To download the latest rules, connect to

the Snort website [1] and register. The

website offers both free and paid regis-

tration options, depending on how up

to date you need your rule set. Members

who have a paid subscription have ac-

cess to newly updated rules 30 days be-

fore the normal registered users. It is bet-

ter not to use the rules provided at ver-

sion release, as these rules are quickly

outdated against new attacks. Once you

have registered (or subscribed), you can

download the new rule set and extract it

into /etc/snort/rules. Don’t forget to use

md5sum to check the tar.

Now that the basic system is installed,

it’s time to prep the database. Once the

MySQL server is running (run a ps -A |

grep mysqld to check), the configuration

can begin.

The database configuration is divided

into separate steps. First, you will need

to set an appropriate password, create

the required database, and define the

table structure. Connect to the MySQL

service as root and create the database

and permissions for snortusr. To open

the MySQL command processor, run

mysql -u root -p at the prompt. Then, you

will be prompted for the root user pass-

word and given a mysql> prompt. Enter

the following commands to complete the

first phase of the setup. Because these

are database commands, you need to

make sure each line is terminated with

a “;” character.

When creating the passwords for the

user, make sure to use passwords that

will stand a better chance in a brute

force attack. A minimum of eight charac-

ters is suggested – with uppercase let-

ters, lowercase letters, numbers, and

special characters.

Snort

65ISSUE 96NOVEMBER 2008

064-069_snort.indd 65 11.09.2008 15:07:48 Uhr

create database snort;

grant INSERT, SELECT on root.* to 5

snort@localhost;

set PASSWORD for snort@ 5

localhost=PASSWORD 5

('Desired_$n0rt_pa55word');

grant CREATE, INSERT, SELECT, 5

DELETE, UPDATE 5

on snort.* to snort@localhost;

grant CREATE, INSERT, SELECT, 5

DELETE, UPDATE on 5

snort.* to snort;

exit

Each command should return a Query

OK response. If not, make sure you have

terminated with a “;” character. The sec-

ond stage of the installation process in-

cludes a simple script that is passed to

the MySQL command processor. Make

sure you are in the directory where you

untarred Snort, then run the following

command:

mysql -u root -p schemas 5

/create_mysql snort

Now that both steps are complete, make

sure all the pieces are in place. To con-

firm everything is ready, enter the

MySQL command processor as the Snort

user created earlier. Check the database

and table structure with the following

commands:

show databases;

use snort;

show tables;

exit

Once the database is ready, you’re ready

to begin configuring Snort.

Once the preparations are finished, it is

time to dive into the Snort configuration.

The main Snort configuration file, snort.

conf (Figure 1), is located in the /etc/

snort directory. Bring this file up in the

editor of your choice and take a quick

look at the various sections. The conf file

contains a wealth of helpful hints about

configuring your IDS. For example,

you’ll need to add information about the

network and servers so that Snort can

map rules correctly. To ensure the sys-

tem monitors the correct traffic, the var

HOME_NET and var EXTERNAL_NET

need to be configured to reflect the net-

work infrastructure. On a simple net-

work, HOME_NET will probably be set

to a private IP range, like 192.168.0.0/

24. This means that all traffic originating

from the 192.168.0.1-255 IP range will

be classified as internal traffic. The de-

tails will vary, depending on your config-

uration. If you have multiple subnets on

your internal network, you can add each

subnet with a comma between them.

The EXTERNAL_NET entry is a list of

specific external addresses to classify as

external. The simplest method to config-

ure this is to use the !$HOME_NET set-

ting, which will be translated by Snort

as all addresses except HOME_NET.

Specify the location of the

Snort rules through the con-

figuration. If you download

the rules to /etc/snort/rules,

add this path to the var

RULE_PATH line. The last,

and important, variable to

set is used by the IDS system

to log data to the database.

Near the bottom of snort.

conf is a section for configur-

ing the output plug-ins. Here

the output database: log,

mysql ~ line must be un-

commented and replaced

with the location of the

MySQL database (Figure 2).

Once the settings are com-

pleted, you have the basis of

a working server. However,

you’re going to need to set

up Snort to run on start-up

and ensure it is running

under the newly created snortusr ac-

count. At this point, you can test Snort

from the command line using snort -u

snortusr -g snortgrp -c /etc/snort/snort.

conf. Snort will run under the supplied

credentials and begin to log or alert on

any captured traffic. When terminated,

Snort displays session statistics (Figure

3). This screen report is nice, but it is not

a perfect solution.

To get Snort to start on boot, insert

a simple shell script into the /etc/init.d

folder. To create this script, open your

 favorite editor and enter the following

lines:

#!/bin/bash

#

Snort startup script - 5

/etc/init.d/snortstart

#

/usr/local/bin/snort -Dq -u 5

snortusr -g snortgrp -c 5

/etc/snort/snort.conf

With this script in place, run chmod +x

/etc/init.d/snortstart to make it execut-

able and update-rc.d /etc/init.d/snort-

start defaults 95 to enter the necessary

symbolic links into the required directo-

ries. This process might be slightly dif-

ferent depending on your Linux distro.

Snort provides an array of rules for filter-

ing out unwanted traffic. Snort rules are

Snort

66 ISSUE 96 NOVEMBER 2008

064-069_snort.indd 66 11.09.2008 15:07:49 Uhr

mostly easy to understand and custom-

ize. Each rule is separated into two sec-

tions: the rule header and the rule op-

tions. The header describes what mes-

sage to display when the rule is trig-

gered. The option contain keywords that

tell Snort how to inspect the packet and

references for research and information

on the message to be displayed if an

alert is triggered.

In the following rule:

alert tcp $EXTERNAL_NET any 5

->$HTTP_SERVERS 5

 $HTTP_PORTS(msg:"WEB-IIS 5

unicode directorytraversal 5

 attempt"; flow:to_ 5

server,established;content:"/ 5

..%c1%1c../"; nocase;5

reference:cve,2000-0884; 5

reference:nessus,10537;5

classtype:web-application-attack; 5

sid:982; rev:13;)

The rule header consists of the com-

mand alert tcp $EXTERNAL_NET any ->

$HTTP_SERVERS $HTTP_PORTS. In

brief, this header tells Snort to alert

when the rule is triggered and to exam-

ine only traffic coming from external

networks (any source port) to internal

http servers (on configured http ports).

Although the alert statement at the be-

ginning might seem obvious, at times

you might only want to log the traffic

into the database, or even do some more

advanced stuff with dynamic and acti-

vate actions. If you’re using Snort as an

in-line IPS, you can also use the Drop,

Reject, or Sdrop options to manage un-

wanted traffic. Snort can check TCP,

UDP, IP, or ICMP packets, depending on

your requirements. If the rule specifies

TCP, and a UDP packet comes in, even

if the rest of the rule header and options

match perfectly, Snort will not perform

any action. This rule specifies TCP,

which is pretty standard for http traffic.

The next part of the header calls on

some variables that are already config-

ured into the Snort configuration file.

The rule will examine traffic arriving

from the $EXTERNAL_NET variable

you set in the snort.conf any source port

number. The -> denotes the direction

of traffic. In this case, the rule applies to

anything coming from $EXTERNAL_NET

to the $HTTP_SERVERS on $HTTP_

PORTS. These variables are defined in

the Snort configuration file.

The direction of traffic is very impor-

tant. In this case, any replies coming

back from the $HTTP_SERVERS will

be ignored since they won’t match the

direction of the rule.

The remainder of the example forms

the rule options. The options section

starts by telling Snort what message to

display in the alert. In this case, the rule

tells Snort to output “WEB-IIS unicode

directory traversal attempt” into the log/

database and alert. Following this com-

mand is the most important part of the

rule options: the part dealing with

matching desired traffic. The flow tag

tells Snort to only examine packets sent

to the target server once a session is es-

tablished. This requirement prevents

Snort from examining the SYN, SYN-

ACK, ACK 3-way handshake that initial-

izes the connection. On a busy IDS,

eliminating the handshake traffic from

the rule check could significantly im-

prove the performance of the system.

The content section is where the real

meat of the rule is formed. In simple

terms, Snort will take the value specified

in the content tag and compare it against

requests sent to the server. The preced-

ing example rule is searching for the

string “/..%c1%1c../”. This string uses

Unicode to hide a directory traversal at-

tempt on a web server. Most systems are

now immune from this kind of attack,

but you’ll still find a number of attempts

to exploit this vulnerability on well-trav-

eled sites. The nocase command follow-

ing the content tag tells the rule to ignore

case when matching the contents. The

final tag to consider is the classtype tag.

The information within this tag tells

Snort how severe the event is. In this

case, the web-application-attack class

type matches a high priority level. These

levels are better explored and configured

in the classifications.config file.

To fine tune the list of active rules,

take a look into /etc/snort/snort.conf

again and examine the list of rules near

the bottom. The default configuration

enables a range of rules that provide a

general overview of traffic coming into

the network.

To trim the alerts to a manageable

level, and to ensure you’re monitoring

the correct services, you can modify the

list of rules. Creating a more focused list

will reduce packet loss and ensure better

performance. The rules you leave active

are dependent on your network infra-

structure and overall requirements. If

your network doesn’t use specific ser-

vices or protocols, disable any unneces-

sary rules to reduce overhead.

By default, a number of rules are dis-

abled. Many of the disabled rules occa-

sionally cause false positives, but you

might want to enable some of them to

use for specific purposes. Once you have

tailored the list to your requirements,

take some time to provide information

on specific services.

As you have already seen, Snort offers

built-in variables to simplify the task of

configuring rules. Without variables, if

your company had a number of http

servers listening on a port other than the

standard port 80 (port 8080 for exam-

ple), you would have to edit every Snort

rule to alter the http port from 80 to

8080. Not only that, but you would have

to change every rule with every update

of the rule set. Instead, you can use

Snort

67ISSUE 96NOVEMBER 2008

064-069_snort.indd 67 11.09.2008 15:07:49 Uhr

Snort’s built-in variables to set the value

of $HTTP_PORTS to 8080 instead of the

standard 80. Then you can run the serv-

ers on whatever ports you want without

having to always edit the rules to match

the environment. To change the value of

HTTP_PORTS to 8080, edit the snort.conf

file as follows:

var HTTP_SERVERS 5

[10.10.10.100/32,10.10.10.111/32]

var HTTP_PORTS [80,8080]

If you want to specify a range of ports

instead of a long list (i.e., 8000 through

to 8080), use a colon (8000:8080).

snort.conf includes built-in variables

for HTTP, AIM, and Oracle services.

Also, you can add your own variables

for other services if you plan to reference

them in custom rules. Providing Snort

with information on where and how the

services on your network are configured

lets the IDS reduce overhead by restrict-

ing traffic checks to a limited range of

destinations. Why check SMTP traffic

destined for a system that only supports

SSH or FTP services? On large networks,

you can never be 100% sure what traffic

is passing over the wires. You might dis-

cover an SMTP service is running on an

obscure server that’s been in the com-

pany since the dawn of time.

Snort also lets you create custom

rules. The best way to learn about creat-

ing rules is to look at an existing rule.

Once you have examined a few of the

rules, you can select one that most

closely matches your requirements and

play around with it. It is common to add

these custom rules to the local.rules file

for testing pur-

poses. Adding

your custom rules

to local.rules also

protects them

from being over-

written when you

update to a new

rule set.

Custom rules

come in handy in situations when the

patch for a known vulnerability isn’t

available yet. Adding a custom rule to

your IDS/ IPS can give you an added

layer of protection, or at least an early

warning system if the problem appears.

Preprocessors, which you can enable

and disable through snort.conf, let Snort

manipulate inbound traffic. Snort auto-

matically enables a number of prepro-

cessors to deal with fragmented traffic,

stateful stream inspection, performance

monitoring, RPC traffic decoding, ftp/

telnet/ SMTP/ DNS/ SMB traffic monitor-

ing, and port scanning. You’ll even find

a preprocessor especially designed for

the Back Orifice trojan. Each preproces-

sor has its own set of options and set-

tings. The defaults should be fine as a

starting point, but spend some time with

the preprocessor configuration if you

want to get the most out of your IDS.

In particular, the sfPortscan preprocessor

can create false positives if set incor-

rectly. If you begin to receive false posi-

tives, you can easily disable sfPortscan

through snort.conf.

If your server is low on RAM, you

might need to tweak some of the prepro-

cessor memory settings. As an example,

the frag3 preprocessor uses 64MB of

RAM as a default for storing and reas-

sembling fragmented traffic. Although

64MB doesn’t seem like much on today’s

servers, you can see how the addition of

several preprocessors could start to make

a dent in server performance. Inversely,

if you have more than enough RAM, you

can increase the available memory to en-

sure fragmented traffic doesn’t become a

problem in high-load environments.

Your IDS system is ticking away, logging

traffic, and alerting a MySQL database.

Having a database full of alerts and

logged traffic is a great thing. However,

receiving an alert at your desktop when

somebody is port scanning your systems

is even better.

Unfortunately, Snort doesn’t offer a

built-in solution for delivering alerts to a

remote desktop. As with many *nix proj-

ects, however, Snort is easy to interface

with other utilities. Two possible candi-

dates are Swatch and Logsurfer.

Other products are available on the

front end to display your Snort data as

nice graphs and statistics. One of the

more popular systems is BASE (Basic

Analysis and Security Engine) [3].

Download BASE version 1.3.9 from the

project website. To get started with

BASE, you’ll need to set up Apache and

PHP on your server. BASE also relies on

ADOdb [4] to provide access to the data-

base through PHP. For security and per-

formance reasons, it is a good idea to set

this up on a system separate from the

Snort sensor system.

A management console is no good if

you can’t get access to it while the IDS

is busy dealing with other traffic. Some-

times having a second NIC in the Snort

sensor especially for monitoring and

management is a good idea. Once you

have the Apache, PHP, and ADOdb pack-

ages installed, you will need to untar the

BASE code into /var/www/base. For the

time being, change the permissions on

the /var/www/base directory to make it

world writable (chmod 777). This prac-

tice is terrible for security, but you’ll

only need this capability for the duration

Snort

68 ISSUE 96 NOVEMBER 2008

If you are planning a Snort server, it is

important to consider the traffic you’re

expecting to handle. Snort will run on

 almost any kind of hardware. However

if you want a fast, reliable IDS without

high packet loss, Snort needs a reason-

ably fast processor. Needless to say,

you’ll also need storage space for the

logs and alerts. The most critical thing,

however, is a good NIC. Where possible,

ensure the NIC is a separate card and

not built into the motherboard. Most

major NIC manufacturers now offer a

server class network card with an on-

board processor especially designed for

network traffic processing.

Spec’ing the Server

s,IBPCAP

s,IBPCAPDEV

s0#2%

s0#2%DEV

s,IBNET������A

s-Y31,3ERVER����FOR-Y31,SUPPORT	

s-Y31,#LIENT�FOR-Y31,SUPPORT	

s-Y31,DEV�FOR-Y31,SUPPORT	

Listing 1: Snort
Dependencies

064-069_snort.indd 68 11.09.2008 15:07:50 Uhr

of the configuration process. You can

then go to the BASE web page, http://

Your_Server/ base, to configure access to

the database (Figure 4). You’ll need to

enter the path to ADOdb files, as well as

your MySQL server name, logon, and

password into the web form.

If the BASE web page says the configu-

ration files aren’t writable, check the

chmod you just performed. BASE will

add content to the MySQL database for

reporting, and once completed, the setup

is finished. If you experience problems,

you might need to uncomment the

mysql.so extension in your php.ini file.

Don’t forget: You will need to reset the

permissions on the /var/www/base di-

rectory to something readable by your

Apache server. It is important to note

that BASE doesn’t provide any built-in

security for the web front end. So if pos-

sible, enabling SSL and ensuring that

there’s an .htpasswd on the BASE direc-

tory is a step in the right direction.

Aside from the database, you will also

find text logs and alerts in /var/log/snort.

These logfiles contain the complete log

data in tcpdump format. Should you

want, you can easily write a script to in-

form you when a new alert is logged. To

work with these files, use snort -r to pro-

cess the tcpdump file into something

easier to read. The -vd switches provide

verbose information. To make things a

little easier, Snort also supports the use

of BPF (Berkeley Packet Filter) [5] to fil-

ter output from the command line.

snort -vd -r snort.log.1206804587 5

tcp and src port 22

snort -vd -r snort.log.1206804587 5

not host 192.168.0.1

Snort provides several options for pre-

venting (and detecting) intrusion. The

three main modes for preventing intru-

sion are inline filtering, cooperation with

an existing iptables-based firewall, and

TCP-RST mode.

When Snort is working as an inline

 filter, all traffic must pass through the

Snort system before it passes to the in-

ternal network. If the traffic triggers a

rule in the Snort system, the packets are

dropped. The inline solution offers ad-

vanced firewall-style security with a reg-

ularly updated rule set. However, the IPS

can also prevent access to systems

through false positives and will slow

down your network if you have more

traffic than the Snort sensor to handle.

For inline mode, you'll need to add -- en-

able-inline to your ./configure command.

If you already have an existing ipta-

bles-based firewall, you can configure

Snort to provide dynamic rule changes.

The iptables option reduces some of the

lag on inbound traffic, but as a trade-off,

your system will be slower to respond to

attacks. Once the malicious traffic trig-

gers an alert, Snort sends a command to

the iptables system to block the attacker.

This style of IPS, if not correctly config-

ured, can be manipulated by a creative

attacker to force a denial of service on

your own systems.

If an attacker spoofs malicious traffic

from your ISP’s router or DNS server,

you could end up blacklisting services

you need to maintain a reliable network

presence. To combat this, use a whitelist

of addresses you never ban. However,

an attacker who discovers the address of

your whitelist can spoof attacks from

this address without fear of being

blocked.

The final option is to allow Snort to

disconnect unwanted connections

through the use of TCP-RST packets

(through the use of the flexresp2 patch).

This option can terminate an unwanted

connection from both ends. However,

this solution causes a race condition be-

tween your IPS and the malicious traffic.

The IPS attempts to close the connection

before the attacker can complete the at-

tack. The attacker will already have an

advantage in this case, because the mali-

cious traffic is already inside your net-

work before Snort can act. This mode of

operation helps prevent certain attacks,

but it might be less reliable than the

other techniques.

How you configure your IDS/ IPS is de-

pendent on your security requirements.

If you intend to set up Snort as an IPS,

test the server in IDS mode until you’ve

correctly tuned the configuration and re-

duced false positives.

Once you’re happy with the configura-

tion, move Snort to its new role as a pre-

vention system.

Snort has many other features to dis-

cover. For example, I never got to men-

tion the retro ASCII art pig (Figure 5).

Numerous books and online resources

will help you get started with the Snort

intrusion detection system. The Snort

project website offers a great number

documents that can help solve problems.

Snort’s website also offer a community

forum that provides user assistance and

news. p

Snort

69ISSUE 96NOVEMBER 2008

Chris Riley is an IT

Security Analyst liv-

ing and working in

Austria. After 12

years working as a

server administra-

tor in the UK and

Germany, he is now spending a ma-

jority of his time performing penetra-

tion tests in and around Vienna.

T
H

E
 A

U
T

H
O

R

[1] Snort homepage:

http:// www. snort. org

[2] Sourcefire:

http:// www. sourcefire. com

[3] BASE: Basic Analysis and Security

Engine: http:// base. secureideas. net

[4] ADOdb database abstraction library

for PHP:

http:// adodb. sourceforge. net

[5] BPF (Berkeley Packet Filter):

http:// tcpdump. org

INFO

MD5 is a cryptographic hash function

that provides a 128-bit hash based on

the contents of file. When downloading

a program or document, you can use

the md5sum command to ensure the

download you have is the same as the

original. Md5sum compares the hash

value of the download to an MD5 hash

of the trusted version. Many software

projects now provide an MD5 hash of bi-

naries. The MD5 is usually found on the

project website in the download section.

Running this check against your down-

load can help you avoid installing cor-

rupted or malicious software.

What is MD5?

sAPACHE�SSL	

sPHP�

sPHP�MYSQL

sPHP�GD

sLIBPHPADODB

Listing 2: BASE
Dependencies

064-069_snort.indd 69 11.09.2008 15:07:50 Uhr

