
lthough personal information

managers (PIMs) come in all

shapes and colors, choosing the

one that fits your needs is not as easy as

it might seem. Despite trying dozens of

otherwise excellent PIM applications,

I still haven’t found a tool that meets

a few rather important requirements.

It must be lightweight, so it can run

equally fast on a desktop or a less-than-

powerful Eee PC, and it must be easy to

use with virtually no learning curve. It

must be able to access data from any-

where – from a desktop machine or lap-

top as well as any machine via a web

browser. Ideally, the application should

let you share data stored in it with other

users. Also, it should allow you to store

virtually any kind of data: notes, calen-

dar events, URLs, recipes, etc. Finally,

the most obvious requirement is that

you should be able to retrieve the data

you need easily.

Failing to find my ideal PIM tool, I de-

cided to write one myself using Python.

The result is Pygmynote [1], a simple

Python-based personal data manager

(Figure 1).

The idea behind Pygmynote is rather

simple. The application uses a MySQL

database with a table that has only three

fields: id (primary key that uniquely

identifies each record in the database),

note, and tags.

Using the available commands, you

can enter the data you want in the note

field, and then use the tags field to de-

scribe the data (Figure 2). For example,

you can enter a recipe and tag it as “reci-

pes dinner,” or you can enter an event

and specify its date in the tags field.

Need to save an interesting link? No

problem: Enter the link in the note field

and tag it as url. In other words, you can

store pretty much anything in Pygmy-

note – you just have to tag your data

properly (Figure 3).

Piling different types of data up in one

application might seem counter-produc-

tive – after all, many popular PIMs go to

great lengths to help you structure and

itemize your data. But this leads to an

interesting paradox – imposing a certain

structure on your data ultimately makes

you less productive. For example, virtu-

ally any PIM has a contact module that

offers a range of fields such as First

Name, Last Name, ZIP, Street, City,

Email, Phone, and so on.

But quite often, you don’t really need

this rigid structure. Why do you need to

We get personal with Pygmynote, a simple Python-based personal data

manager. BY DMITRI POPOV

01 import ftplib

02

03 conn = ftplib.FTP('ftp.

server','username','password')

04 f = open('pygmynote.txt','rb')

05 conn.storbinary('STOR pygmynote.

txt', f)

06 f.close()

07 conn.quit()

Listing 2: Upload the
pygmynote.txt file via Ftp

01 elif command == "my":

02 cursor.execute ("SELECT * FROM

notes WHERE tags LIKE '" + USERID +

"'""ORDER BY id ASC")

03 rows = cursor.fetchall ()

04 for row in rows:

05 print "\n %s %s [%s]" %

(row[0], row[1], row[2])

06 print "\n Number of records:

%d" % cursor.rowcount

Listing 1: Find records with
a Specific User ID

Workspace: Pygmynote

88 ISSUE 96 NOVEMBER 2008

088-090_workspace.indd 88 11.09.2008 14:03:28 Uhr

put the street and zip code in separate

fields?

At any rate, it would save you a lot of

time and effort if you could just type all

the contact info for a particular person in

one field.

Also, the traditional approach makes

the application less flexible because you

can only use the Contacts module to

store contact information. If you want

to save notes, you need another module,

and managing tasks and to-dos requires

yet another component. And what if you

also need to keep tabs on your recipes,

tasks, and to-dos?

Before you know it, you need five or

seven different modules or separate ap-

plications to keep track of all your data.

Pygmynote attempts to solve these prob-

lems by allowing you to store any kind

of data.

The trick is to describe each type

of data properly, so you can quickly

 retrieve the records you want later.

Because Pygmynote is written in

 Python, you obviously need to have

 Python installed on your system. Most,

if not all, Linux distributions come with

Python pre-installed, so you only have to

install a couple of packages to enable the

MySQL functionality.

On Ubuntu, use sudo apt-get install

mysql-server python-mysqldb to install

the MySQL server and the Python for

MySQL package.

To do the same on

Mandriva, use the urpmi

mysql python-mysql com-

mand. The MySQL server

might refuse to start on

Mandriva because of an

unresolved bug. Fortu-

nately, it’s quite easy to fix that problem.

Just execute the command

rpm -e mysql

rm -f /var/lib/mysql/ 5฀

mysql/*

/bin/hostname 127.0.0.1

urpmi mysql

and you can then start MySQL server via

the Mandriva Control Center.

Next, you must configure Pygmynote

so that it can connect to the MySQL da-

tabase and your IMAP email account.

First, open the pygmynote.py script in a

text editor and enter the relevant infor-

mation in the MySQL connection settings

and IMAP connection settings section.

After you make the script executable

with the chmod a+x python.py com-

mand, Pygmynote is ready to go.

To launch the script, double-click on

it or use the python pygmynote.py com-

mand in the terminal.

Then run the create command to cre-

ate the notes table in the specified data-

base.

Pygmynote sports 13 easy-to-remember

commands that allow you to find the

data you need and perform actions with

the records quickly. For example:

s฀ i: Inserts a new note.

s฀ a: Lists all records in the database.

s฀ td: Finds all records containing the

current date (“today”) in the tags

field, which quickly allows you to

view the list of tasks and events sched-

uled for today.

What if you are on the move and you want to use Pygmynote on a Win-

dows machine without Python? This problem is easy to solve by install-

ing Portable Python [2] on a USB stick. To do this, download the latest

version of Portable Python, unzip the downloaded archive, and move

the resulting folder to the USB stick. To add the MySQL for Python mod-

ule to the portable environment, copy the MySQL db folder inside the

Python25 \ Lib \ site-packages (on Windows) to the same directory in

Portable Python. Also copy the following files: _mysql.pyd, _mysql_

exceptions.py, _mysql_exceptions.pyc, and _mysql_exceptions.pyo.

Now you can use Pygmynote on any Windows machine.

Pygmynote on Windows

Workspace: Pygmynote

89ISSUE 96NOVEMBER 2008

088-090_workspace.indd 89 11.09.2008 14:03:32 Uhr

s฀ u: Updates the existing record.

s฀ d: Deletes a record by specifying its

ID.

s฀ url: Handles records containing URLs

in the note field. Just execute the com-

mand, enter the ID number of the de-

sired record, and Pygmynote launches

the URL in the default browser.

s฀ w: Saves all the records in the tab-sep-

arated pygmynote.txt file. With this

command you can back up your Pyg-

mynote data or import it into any ap-

plication that supports the tab-sepa-

rated text format, such as OpenOffice.

org Calc.

s฀ eml: Retrieves email reminders. For

 example, if you don’t have access to

Pygmynote, also you can send an

email to yourself containing a specific

keyword, such as “Pygmynote” or

“Reminder,” in the

subject line. (You

can specify the de-

sired keyword in

the IMAP connec-

tion settings sec-

tion of the pyg-

mynote.py script.)

You can send

yourself email

reminders, like

“Pygmynote: Re-

member to buy

milk,” “Pyg-

mynote: Doctor’s

appointment,” or

“Reminder: Pay

bills.” You can

then use the eml command to view

the messages containing the keyword.

s฀ h: Shows you a list of all Pygmynote

commands.

Because Pygmynote is just a simple Py-

thon script, you can tweak it to fit your

particular needs or add new functional-

ity. For example, say you plan to use

Pygmynote in a multi-user environment

and you would like to give users the

ability to view their own tasks quickly.

Simply add the USERID='' option to the

MySQL connection settings section in the

script. Then copy an existing elif block

and modify it as shown Listing 1.

The my command can be whatever

string you like. The next time you add a

record, you can add your user ID to the

tags field (e.g., “dp”), and view all the

records with your user ID by executing

the my command.

The great thing about Python is that it

comes with a lot of modules that allow

you to add nifty features to Pygmynote

without too much code wizardry. For

 example, the w command lets you save

data stored in Pygmynote as a text file,

but what if you want to upload the file

to a remote server for off-site backup?

The ftplib module allows you to do so

with just a few lines of code (Listing 2).

The ability to generate an RSS feed

containing shared records can be an-

other useful feature, especially in a

multi-user environment. You have sev-

eral ways to generate an RSS feed in

 Python. The code in Listing 3 does this

using the xml.etree.cElementTree mod-

ule. The main advantage of this solution

is that the xml.etree.cElementTree mod-

ule is part of Python 2.5, so you don’t

need to install any additional software.

As you might have figured out, the code

publishes only records containing “rss”

in the tags field by using the SELECT *

FROM notes WHERE tags LIKE '%rss%'

SQL statement. This way, you can spec-

ify which records you want to share by

simply adding “rss” to the tags field.

Obviously, Pygmynote is not the most

sophisticated tool out there, but it pro-

vides an alternative approach to manag-

ing personal data. Because it’s written in

Python and sports a rather simple struc-

ture, you easily can adapt and extend the

script to meet your needs. p

[1] Pygmynote:

pygmynote. googlecode. com

[2] Portable Python:

http:// www. portablepython. com/

INFO
01 import xml.etree.cElementTree as ET

02

03 cursor = conn.cursor ()

04 cursor.execute ("SELECT * FROM notes WHERE tags LIKE '%rss%'")

05 rows = cursor.fetchall ()

06

07 RSSroot = ET.Element('rss', {'version':'2.0'})

08 RSSchannel = ET.SubElement(RSSroot, 'channel')

09 ET.SubElement(RSSchannel, 'title').text = 'Pygmynote Feed'

10 ET.SubElement(RSSchannel, 'link').text = 'http://localhost/rss.xml'

11 ET.SubElement(RSSchannel, 'description').text = 'The feed generated by

Pygmynote'

12 for row in rows:

13 RSSitem = ET.SubElement (RSSchannel, 'item')

14 ET.SubElement(RSSitem, 'title').text = row[1]

15 ET.SubElement(RSSitem, 'description').text = row[2]

16 RSSfeed = ET.ElementTree(RSSroot)

17 RSSfeed.write("rss.xml")

Listing 3: RSS Feeds from Pygmynote records

Dmitri Popov holds

a degree in Russian

language and com-

puter linguistics. He

has been writing

exclusively about

Linux and open

source software for

several years, and his articles have

appeared in Danish, British, North

American, German, and Russian

magazines and websites.

T
H

E
 A

U
T

H
O

R

Workspace: Pygmynote

90 ISSUE 96 NOVEMBER 2008

088-090_workspace.indd 90 11.09.2008 14:03:33 Uhr

