
f you ever work with HTML, you are probably familiar

with the stylesheet language known as Cascading Style

Sheets (CSS). The purpose of CSS is to let you sepa-

rate the presentation of a web page from the content.

The content is described through a markup language

such as HTML or XHTML. The presentation is man-

aged through CSS.

Separating content from presentation makes the

HTML cleaner and easier to read, and it also means

that you can change the presentation across a whole

site much more easily. Do you want to change all

your h1 headers from centered blue 20-pt to left-

aligned red 24-pt? With CSS, you can do that by

changing a single file. CSS also improves accessibility;

users with special needs can easily create custom style

rules for easier access.

Although it is possible to put CSS rules in an HTML file, it

is better to create a separate CSS file, because it gives you a cen-

tral point for managing the style. In a typical CSS scenario, the HTML

header will look like that shown in Listing 1, and the CSS file will look like

Listing 2.

Note that you can apply styles to all instances of a particular HTML tag (as

with <h1>) or only to certain instances by labeling them with a class type.

CSS does far more than allow you to change the color, size, or background. Artful use

of CSS lets you add interesting new elements to your site, and CSS can even help you

replace difficult-to-use tables and Javascript. This article goes beyond the headings

and fonts to show how you can easily add new features to your website with CSS.

Read on for a look at how you can employ the expressive power of CSS in your own

environment. This article assumes you have some basic familiarity with CSS.

Cascading Style Sheets (CSS) can do much more than define the color

and font of your web text. We’ll show you how to build the power of

CSS into your web creations. BY JULIET KEMP

CSS Tricks

26 ISSUE 94 SEPTEMBER 2008

01 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN" "http://www.w3.or

02 g/TR/xhtml1/DTD/xhtml1-transitional.dtd">

03 <html>

04 <head>

05 <title>Page Title</title>

06 <link rel="stylesheet" type="text/css"

href="site.css" />

07 </head>

08

09 <body>

10 <h1>Page Header</h1>

11 <p class="firstpara">This is the

first paragraph of the page.</p>

12

13 <p>Some more text here</p>

14 </body>

15 </html>

Listing 1: sample.html

For additional information, try the

W3C Cascading Stylesheets homepage

[1]. You’ll also find several CSS tutorials

on the web [2].

A very common page layout is one

that has multiple columns on a page.

Previously, you might have handled mul-

tiple columns with the use of a table, but

the table option is frowned upon from

an accessibility point of view, and a

table can be difficult to maintain. It’s

easy to get confused about what part of

the page is where, and to forget to close

off your tables, cells, and rows properly,

which might confuse some browsers.

CSS to the rescue: You can use the float

property to make your layout multi-

columned but clear and easy to use.

Listing 3 shows the HTML for a two-

column layout with a full-page-width

header and footer; Listing 4 shows the

CSS. Listing 3 uses id to identify the

 containers rather than name or class,

 although these options work in similar

ways.

The class is best used when you have

more than one example of the type on

a page. With this column layout, you

should have only one columnone per

page. The id is better for identifying a

particular type of an element, whereas

name is good for identifying a particular

instance of an element – for example, a

specific menu item on a page. In this

case, I want to identify a generic type of

element (e.g., a columnone sort of div),

so I use id.

The width of column 1, plus the width

of column 2, plus twice the padding of

column 1 (once for the left side, once for

the right side), plus twice the padding of

column 2 need to add up to 100% or less

for the float to work correctly.

The footer uses the clear property to

make sure it stays below both the previ-

ous floats. This means that the container

element will extend around all of the

other elements.

To explain that last statement a bit

 further: Floating elements don’t “count”

in the page layout. When the browser is

laying out the page, floated elements are

put “on top” of other elements, rather

than placed in the regular flow of the

page. If you don’t have an element after

CSS Tricks

27ISSUE 94SEPTEMBER 2008

01 #container {

02 width: 100%;

03 background: #9cf;

04 }

05 #header {

06 width: 100%;

07 padding: 1%;

08 text-align: center;

09 background: #999;

10 }

11 #columnone {

12 width: 45%;

13 float: left;

14 padding: 1%;

15 }

16 #columntwo {

17 width: 45%;

18 float: right;

19 padding: 1%;

20 }

21 #footer {

22 clear: both;

23 text-align: center;

24 font-style: italic;

25 background: #999;

26 }

Listing 4: columns.css

01 <div id="container">

02 <div id="header">

03 <h1>Header of page</h1>

04 </div>

05 <div id="columnone">

06 <h2>Column One text</h2>

07 <p>Put your text here.</

p>

08 </div>

09 <div id="columntwo">

10 <h2>Column Two text</h2>

11 <p>Put your text here.</

p>

12 </div>

13 <div id="footer">

14 <p>Footer text</p>

15 </div>

16 </div>

Listing 3: columns.html
01 h1 {

02 color: blue;

03 font-size: large;

04 text-align: center;

05 }

06

07 p.firstpara {

08 text-align: center;

09 }

Listing 2: site.css

your floats that uses clear, then they

won’t be within any container element –

they look like they’re floated on top of

the container element, instead. This

 almost certainly isn’t what you need,

so here I use a footer. (It doesn’t have

to have any content!)

If you want to add a third column, you

can add another float: left <div>, or

you can float one column left and an-

other one right, if you prefer, with a

static central column. Again, make sure

the width of all three columns plus their

padding on each side adds up to less

than 100% of the page width; otherwise,

one of the columns will be forced below

the others.

The use of percentages means that as

people shrink or enlarge their browser

windows, the columns and other ele-

ments will shrink and grow accordingly.

This approach is more flexible than

hard-coding the width of the elements.

However, you can use min-width or

max-width if you don’t want them to be

shrunk below a particular size. If you

put min-width on the container element,

scrollbars will appear if the user tries to

shrink the browser window below this

size. This technique can be useful if you

want a fairly narrow column on one side

and you don’t want it to shrink beyond

the width of, say, a menu item title.

The other attributes – background and

font-style, for example – set other prop-

erties of the containers.

See Figure 1 for a look at this basic

layout.

A horizontal nav bar along the top of

your site is often untidy and hard to

manage. Instead, you can achieve the

same effect by writing the navigation as

a list and then using CSS to style the list.

Listings 5 and 6 show the code.

The screenshot shown in Figure 2

shows what this menu looks like when

added to the two-column layout de-

scribed previously.

The text-align: center; attribute centers

everything within this <div>. Below

that, the padding-right attribute gives

some space between the menu items –

you can adjust this to your preference.

The text-decoration: none removes the

underlining that links have by default –

this is tidier for a menu like this. I’ve

also changed the text color.

The list-style-type: none statement

means that the list won’t have any bul-

lets by the items – again, a neater style

for a menu.

Alternatively, a variety of list-style-type

values are available if you do want a bul-

let or number by each item. The display:

inline means that, instead of the stan-

dard list structure in which each item

displays on a new line, the list items will

display on the same line, one after the

other. With display: none, you could

even choose not to display the list at all.

The normal behavior for lists is display:

block – this puts each element on a new

line. Other elements can have a display

value as well.

By tagging the list (e.g., <ul

class="nav">) and editing the CSS ap-

propriately, you could achieve a similar

effect, but putting it inside a div tag is

more flexible.

So you have your nav bar, but now you

want to make submenus pop up on roll-

over. Do you think you’ll need Javascript

to do this?

01 <div id="nav">

02

03 Home

04 Contact us

05 Find us

06 Product list

07

08 </div>

Listing 5: navigation.html

CSS Tricks

28 ISSUE 94 SEPTEMBER 2008

01 #nav {

02 text-align: center;

03 }

04 #nav a {

05 padding-right: 10px;

06 text-decoration: none;

07 color: #036;

08 }

09 #nav ul li {

10 list-style-type: none;

11 display: inline;

12 }

Listing 6: navigation.css

Think again – you can make it happen

with CSS. I should point out that IE6

doesn’t work with this technique. To get

around this problem, make sure the par-

ent link is clickable and goes to a page

that indexes the submenu, which is good

practice anyway for accessibility rea-

sons. Alternatively, you can set up

Javascript that runs only if it detects an

IE6 browser.

In Listing 7, the navigation is again set

up as a list, but this time with submenus

as sublists (Figure 3). This configuration

is very basic, aesthetically speaking, but

you can do much more to make it look

more attractive.

Listing 8 shows the CSS. The basic list

setup (which will apply to both the outer

and the inner lists) has no margin but a

little padding and a contrasting back-

ground. The sublists do not display by

default; otherwise, they would just be

there all the time rather than appearing

only on mouseover.

Locating the list items by relative posi-

tion means that they are positioned

within the general flow of the page (in

other words, they are positioned after

the elements before them, and before the

elements after them!), although values

such as top and right are honored. As in

an earlier example, you don’t want bul-

lets; hence, you set list-style-type.

The magic happens in the final sec-

tion. When you rollover a list item that

has a list child element, it will now dis-

play. It displays as a block list, with ab-

solute position (meaning it doesn’t get

pushed out of the way by any other ele-

ments) underneath the parent element

(set by top: 100%, meaning the parent

element is on top, which is slightly

counterintuitive). The left: 0% value

means that the sublist will appear ex-

actly beneath the relevant menu item,

rather than being offset. Without this

value, the sublist will appear way over

on the left-hand side of the page, which

is its default.

Also, you could choose to have the

sublist appear to the left, up, or down.

For example, if you want to have a side

menu, you would probably want the

CSS Tricks

29ISSUE 94SEPTEMBER 2008

01 #nav ul {

02 padding: 1ex;

03 margin: 0;

04 background: #fff;

05 }

06

07 #nav ul ul {

08 display: none;

09 }

10

11 #nav ul li {

12 list-style-type: none;

13 position: relative;

14 margin: 0;

15 }

16

17 #nav ul li:hover > ul {

18 display: block;

19 position: absolute;

20 top: 100%;

21 left: 0%;

22 background-image: url(/

images/fix_ie_hover.gif); */

IE7 bugfix */

23 }

Listing 8: rollover.css

01 <div id="nav">

02

03 Menu 1

04

05 <a href="menu1/sub1.

html">Submenu 1.1

06 <a href="menu1/sub2.

html">Submenu 1.2

07

08

09 Menu 2

10

11 <a href="menu2/sub1.

html">Submenu 2.1

12 <a href="menu2/sub2.

html">Submenu 2.2

13

14

15

16 </div>

Listing 7: rollover.html

submenus to appear to the left. The

best way to learn the various options is

to play around with the settings.

The final background image element

is an IE7 bug fix – without this, in some

circumstances your rollover menus

wouldn’t be “sticky” in IE7. That is, in-

stead of staying put for long enough for

you to click on whichever submenu item

you want, the submenu would vanish

immediately when you take your mouse

off the main parent list item. The back-

ground image fixes this – you should ei-

ther use a transparent image, or a file

with no content because it is the image

call itself that resolves the bug. Of

course, you can make this design more

attractive by defining borders, custom

bullets, different colored backgrounds,

and anything else your heart desires.

At times, you might want some means

for marking external links on your site.

Some users also might want to

identify links to non-HTML

files (Word documents or PDF

files).

First, you need to set up a

small image file with an appro-

priate icon – as shown in Fig-

ure 4. Adobe and Microsoft

make appropriate icons for PDF

and .doc files available on their

websites; you’ll have to find

your “external link” icon from

somewhere else. Then, you can

set up the CSS to pick up on

these sorts of links.

Listing 9 shows the HTML

for this, and Listing 10 shows the CSS.

The first section in the CSS uses a reg-

ular expression to set up the external

link image as a background image for

all links that begin with http. It’s set to

sit at the top right of the link and not to

repeat. The padding ensures the image

doesn’t crowd into the right-hand side

of the link itself. If you need to vary this

padding according to the size of the

icon, you could use slightly different

 settings for each icon, as I’ve done here.

The first section should automatically

exclude any internal links because it’s

good practice to refer to internal links

without the http in front of them. How-

ever, for cases in which the full form has

been used, the second section cancels

out the first for links within your site

(obviously, you need to replace www.

 example. com with your own URL).

The last two sections do the same as

the first, but they only apply to links

ending with .pdf or .doc. Because these

sections occur later on in the CSS, they’ll

override the external link icon. If you

would prefer to display the external link

icon, rather than a file-type icon, for a

document on an external site, rearrange

the order, but be aware that the first and

second sections must be in order or the

second section won’t override the first.

The use of CSS instead of table layouts

or Javascript (or, worse, Flash) makes

your website much more accessible, as

well as making it easier, tidier, and more

maintainable. But bear in mind that you

might face problems with some browsers

(notably IE6) that don’t implement the

standards properly.

Make sure you check everything thor-

oughly on multiple browsers (including

lynx, w3m, or another text-only

browser) to ensure that your design is

still usable if some of the snazzier op-

tions don’t work properly.

For more examples of just what you

can do with CSS, visit the CSS Zen Gar-

den [3], an eye-opening site showing the

power of CSS. p

CSS Tricks

30 ISSUE 94 SEPTEMBER 2008

[1] Cascading Style Sheets homepage:

http:// www. w3. org/ Style/ CSS/

[2] Guide to Cascading Style Sheets:

http:// htmlhelp. com/ reference/ css/

[3] CSS Zen Garden:

http:// www. csszengarden. com/

INFO

Juliet Kemp, who has been playing

around with Linux ever since she

found out that it was more fun than

Finals revision, has been a sys admin

for around five years. She is probably

slightly obsessive about accessibility

and tidy HTML.T
H

E
 A

U
T

H
O

R

01 a[href^="http:"] {

02 background: url(images/

externallink.gif) no-repeat

right top;

03 padding-right: 15px;

04 }

05

06 a[href^="http://www.example.

com"] {

07 background-image: none;

08 padding-right: 0;

09 }

10

11 a[href$=".pdf"] {

12 background: url(images/

pdflink.gif) no-repeat right

top;

13 padding-right: 18px;

14 }

15

16 a[href$=".doc"] {

17 background: url(images/

wordlink.gif) no-repeat right

top;

18 padding-right: 25px;

19 }

Listing 10: links.css

01

02 <a href="http://

www.anothersite.com">Link to

another site

03 <a

href="documents/readme.

pdf">More information</

li>

04 <a

href="documents/form.

doc">Form to fill in

05

Listing 9: links.html

