
73

W
hen you want to know which

ports are currently being used,

you call netstat. This practical

Linux utility can be run in several

modes, which the user controls through

command-line options. For example, the

-s option produces network traffic statis-

tics (Figure 1), and -put displays the

ports of all applications that are cur-

rently communicating over TCP (Figure

2). Both outputs are useful, but what is

really interesting is the chronological

progression of events rather than a snap-

shot at a given moment.

Top for the Network
The top utility serves as a model for this

kind of dynamic output, displaying and

continually updating the CPU load,

memory usage, and other basic data of

currently running processes. Thanks to

CPAN, creating a dynamic terminal ap-

plication like this from the static output

from top is not really difficult.

The Curses::UI module delivers the

necessary framework here, providing the

dynamic output and making it possible

to react to keys pressed by the user. The

module’s event loop can be merged

 easily into the kernel of the Perl Object

Environment (POE), making it possible

to execute many different tasks within a

process or a thread.

Don’t Freeze!
As with all GUI applications that call

other programs, you will encounter a

problem. While the external program

runs, the calling application no longer

reacts to user input and mouse clicks,

giving the user the impression that the

application is frozen.

The netstat command generally fin-

ishes quite quickly, but with the -put op-

tion, it resolves the hostname of the IP

address associated with a socket with a

reverse DNS lookup. With a slow DNS

server or many sockets, this can lead to

considerable delays; sometimes it takes

several seconds for netstat to complete.

Delays can be prevented with the -n op-

tion, but the user must be content with

just the IP address. But users want it all:

the luxury of name resolution and a fast-

reacting GUI at the same time.

Racer Components
The GUI application based on Curses::UI

works together with the POE kernel, pro-

cessing key presses and mouse clicks as

well as stdout events from other POE

sessions.

The netstat command should also play

well with the POE kernel, which should

start the process but not wait for the

 result. Rather, it immediately should re-

turn control to the kernel so that the

 latter can again refresh the output and

Refreshing netstat output with Perl

NETWORK
VIEW

The netstat utility reveals how your Linux box interacts with the local

network. With a few Perl modules, you can develop a tool that displays

the data dynamically, exactly the way top does. BY MICHAEL SCHILLI

ro
tw

ild
, p

h
o
to

c
a
s
e
.c

o
m

PROGRAMMINGPerl: Dynamic netstat

73ISSUE 89APRIL 2008

Figure 1: The netstat -s command delivers

statistical data about network traffic

 managed by Linux.

073-078_perl.indd 73 13.02.2008 16:51:51 Uhr

react to GUI events. If the

output from netstat fi-

nally arrives, the kernel

again receives this as an

event and calls a function

that filters and stores the

data into varaibles for

subsequent processing.

The POE::Wheel::Run

module is a component of

the POE distribution from

CPAN. The module takes care of an ex-

ternal process and changes the state of

an automaton in case something hap-

pens on the standard output of the pro-

cess. Other events occur if the process

ends successfully or if an error occurs.

Wheels in the Kernel
The wheel, in turn, finds its place in a

POE::Session, a state automaton, which

latches itself into the POE kernel. The

kernel ensures that now and then the

automaton gets a time slice but must

guarantee that all of the registered ses-

sions eventually get a turn. In contrast

to a preemptive Linux kernel that some-

times pulls the rug out from under a pro-

cess, the POE framework relies on the

amicable behavior of all sessions.

Each session must immediately return

control to the kernel, as soon as it can

no longer run at full speed. With this co-

operative multitasking, it is important

that all tasks that are waiting for some-

thing (hard disk, a network event, or

output from an external process) play

along. An inconsiderate component can

paralyze the entire system. Each session

has a private data area – the heap –

which is implemented as hash and

stores key-value pairs with session data.

Autonomous Automatons
The POE world encapsulates autono-

mous state automatons in so-called com-

ponents. The application simply loads

Perl: Dynamic netstatPROGRAMMING

74 ISSUE 89 APRIL 2008

01 package PoCoRunner;

02 use strict;

03 use warnings;

04 use POE::Wheel::Run;

05 use POE;

06

 07 #############################

08 our $PKG = __PACKAGE__;

09

 10 #############################

11 sub new {

12 #############################

13 my ($class, %options) =

14 @_;

15

 16 my $self = {%options};

17

 18 POE::Session->create(

19 package_states => [

20 $PKG => [

21 qw(_start stdout

22 finish run)

23]

24],

25 heap =>

26 { self => $self },

27);

28

 29 bless $self, $class;

30 }

31

 32 #############################

33 sub _start {

34 #############################

35 my ($kernel, $session) =

36 @_[KERNEL, SESSION];

37 $kernel->post($session,

38 "run");

39 }

40

 41 #############################

42 sub run {

43 #############################

44 my ($kernel, $heap,

45 $session)

46 = @_[KERNEL, HEAP,

47 SESSION];

48

 49 my $wheel =

50 POE::Wheel::Run->new(

51 Program => $heap->{self}

52 ->{command},

53 ProgramArgs => [

54 $heap->{self}->{args}

55],

56 StdoutEvent => "stdout",

57 ErrorEvent => "finish",

58 CloseEvent => "finish",

59);

60

 61 $heap->{"wheel"} = $wheel;

62 $heap->{"stdout"} = "";

63 }

64

 65 #############################

66 sub stdout {

67 #############################

68 my ($input, $heap) =

69 @_[ARG0, HEAP];

70

 71 $heap->{stdout} .=

72 "$input\n";

73 }

74

 75 #############################

76 sub finish {

77 #############################

78 my ($kernel, $heap) =

79 @_[KERNEL, HEAP];

80

 81 ${ $heap->{self}->{data} }

82 = $heap->{stdout};

83

 84 $kernel->delay("run",

85 $heap->{self}

86 ->{interval});

87 }

88

 89 1;

Listing 1: PoCoRunner.pm

Figure 2: The output of the netstat -put command shows a list of all active TCP ports.

073-078_perl.indd 74 13.02.2008 16:52:05 Uhr

these classes and creates new objects

as needed, and the POE kernel includes

their state machines and runs them

 autonomously behind the scenes.

The PoCoRunner.pm listing (PoCo is

the usual abbreviation for POE Compo-

nent) shows a component that takes the

name of a program (netstat, for exam-

ple) with options and creates a “wheel,”

which then shoots off an external pro-

cess with the given program (Listing 1).

Afterward, the wheel immediately re-

turns control again to the kernel without

waiting for the result.

With each line that appears on the

standard output of the process, POE re-

ceives a stdout event and calls the PoCo-

Runner.pm method stdout(). There, the

session-specific heap variable data (a

scalar) collects the process output as

text. If netstat has terminated, the au-

tomaton changes to the method finish(),

regardless of whether the process has

terminated successfully or there was an

error. It then copies the collected stdout

data into the scalar instance variable

data of the PoCoRunner object. Because

the constructor new->() has received a

reference to it from the calling program,

the main script nettop ends up with the

output data in either $stats_data or

$conns_data.

Subsequently, finish(), starting from

line 76, calls the kernel method delay()

and causes it to call the PocoRunner

method run() with a pre-defined delay,

which then resets the heap-variable data

and again calls the wheel POE::Wheel::

Run with the specified external program

netstat.

Thus, if someone links this component

into a POE program and calls the con-

structor with an external command plus

command-line parameters, an interval

duration, and a reference to a scalar, the

component not only starts the external

command again and again, but also

 ensures that the newest and complete

output is stored in the scalar.

The PoCoRunner state automaton is

defined by calling the POE::Session’s

 create() method in line 18.

The states are:

• _start: Start state

• _run: Fires off the process

• _stdout: Process sends a batch of data

to stdout

• _finish: Process terminates

POE maps these states to the functions

of the same name within the module

 PoCoRunner.pm, based on the parameter

package_states in line 19.

Parameters POE-Style
POE passes session parameters in its

own way; for example, if you have an

event handler taking arguments like

 my($kernel, $heap) =

 @_[KERNEL, HEAP];

the session passes the handler a set of

arguments in the Perl-typical array @_.

The handler grabs only two of these

through the macros KERNEL and HEAP.

These constant functions are imported

by POE into the namespace and return

integer values, so the construct above

represents a so-called array slice, which

returns a subset of the parameters in the

array as a list.

the mathematics of humour
TWELVE Quirky Humans,

TWO Lovecraftian Horrors,

ONE Acerbic A.I.,

ONE Fluffy Ball of Innocence and

TEN Years of Archives

 EQUALS

ONE Daily Cartoon that Covers the

 Geek Gestalt from zero to infinity!

Over Two Million Geeks around the world can’t be wrong!

COME JOIN THE INSANITY!

PROGRAMMINGPerl: Dynamic netstat

75ISSUE 89APRIL 2008

073-078_perl.indd 75 13.02.2008 16:52:05 Uhr

Perl: Dynamic netstatPROGRAMMING

76 ISSUE 89 APRIL 2008

The nettop listing (Listing 2) pulls in

two instances of PoCoRunner in lines 12

and 18: one for netstat -s and an addi-

tional one for netstat -put. The output

ends up in the scalars $stats_data and

$conns_data.

The function conns_parse in line 241

works through the netstat output (Figure

2), extracts the important columns (local

IP, network IP, status, program), creates

an array of arrays from the table format,

and returns a reference to it.

On the other hand, stats_parse in line

173 analyzes the output from netstat -s,

as in Figure 1, and stores the output in a

hash of hashes. The sub-headers (e.g.,

“Ip:”) become entries in the top-level

hash and the labels of the individual

 Listing 2: nettop
001 #!/usr/bin/perl -w

002 use strict;

003 use Curses::UI::POE;

004 use List::Util qw(max);

005

 006 my ($STATS, $CONNS);

007 my $netstat = "netstat";

008 my $REFRESH_RATE = 1;

009

 010 use PoCoRunner;

011

 012 PoCoRunner->new(

013 command => $netstat,

014 args => "-s",

015 data => \my $stats_data,

016 interval => 1,

017);

018 PoCoRunner->new(

019 command => $netstat,

020 args => "-put",

021 data => \my $conns_data,

022 interval => 1,

023);

024

 025 my $CUI =

026 Curses::UI::POE->new(

027 -color_support => 1,

028 inline_states => {

029 _start => sub {

030 $poe_kernel->delay(

031 'wake_up',

032 $REFRESH_RATE

033);

034 },

035 wake_up =>

036 \&wake_up_handler,

037 chld => sub {

038 waitpid $_[ARG1], 0;

039 },

040 }

041);

042

 043 my $WIN =

044 $CUI->add(

045 qw(win_id Window));

046

 047 my $TOP = $WIN->add(

048 qw(top Label

049 -y 0 -width -1

050 -paddingspaces 1

051 -fg white -bg blue

052), -text => top_text()

053);

054

 055 my $LBOX = $WIN->add(

056 qw(lb Listbox

057 -padtop 1 -padbottom 1

058 -border 1),

059);

060

 061 my $BOTTOM = $WIN->add(

062 qw(bottom Label

063 -y -1 -width -1

064 -paddingspaces 1

065 -fg white -bg blue

066),

067 -text => "TCP Watcher v1.0"

068);

069

 070 $CUI->set_binding(

071 sub { exit 0; }, "q");

072 $poe_kernel->sig("CHLD",

073 "chld");

074 $CUI->mainloop;

075

 076 #############################

077 sub wake_up_handler {

078 #############################

079 # Re-enable timer

080 $poe_kernel->delay(

081 'wake_up',

082 $REFRESH_RATE

083);

084 data_refresh();

085 $TOP->text(top_text());

086 $TOP->draw();

087

 088 my $state_fmt = col_fmt(

089 [

090 map $_->{state},

091 @$CONNS

092],

093 8

094);

095 my $prog_fmt = col_fmt(

096 [

097 map $_->{prog}, @$CONNS

098],

099 20

100);

101 my $rem_fmt = col_fmt(

102 [

103 map $_->{remote},

104 @$CONNS

105],

106 32

107);

108 my $loc_fmt = col_fmt(

109 [

110 map $_->{local},

111 @$CONNS

112],

113 20

114);

115

 116 my @lines = map {

117 $state_fmt->(

118 $_->{state})

119 . " "

120 . $prog_fmt->(

121 $_->{prog})

122 . " "

123 . $rem_fmt->(

124 $_->{remote})

125 . " "

126 . $loc_fmt->(

127 $_->{local})

128 . " " . "";

129 } sort conn_sort @$CONNS;

130

 131 $LBOX->{ -values } =

132 [@lines];

133 $LBOX->{-labels} =

134 { map { $_ => $_ }

135 @lines };

073-078_perl.indd 76 13.02.2008 16:52:07 Uhr

 values (e.g., “incoming packets deliv-

ered”) end up as keys in the subordinate

hash. The values stored under it corre-

spond to the column of numbers as read

from the netstat output. Altogether,

stats_parse() uses three different regular

expressions in order to grab the interme-

diate headings, as well as two different

line output formats from netstat.

Out of all of the connections, the ones

with the status ESTABLISHED are often

the most interesting, so the sort routine

conn_sort() in line 206 sorts them to the

top. As usual in Perl, the sort function

called in line 129 is passed the compari-

son function as a parameter. With each

comparison in the sorting process, sort

then calls conn_sort() and fills the spe-

PROGRAMMINGPerl: Dynamic netstat

77ISSUE 89APRIL 2008

Listing 2: nettop
136

 137 $LBOX->draw(1);

138 }

139

 140 #############################

141 sub top_text {

142 #############################

143 my $ip = $STATS->{Ip};

144 my $tcp = $STATS->{Tcp};

145

 146 return sprintf

147 "Packets rcvd:%s " .

148 "sent:%s TCPopen "

149 . "active:%s passive:%s",

150 $ip->{

151 'total packets received'

152 },

153 $ip->{

154 'requests sent out'},

155 $tcp->{

156 'active connections openings'

157 },

158 $tcp->{

159 'passive connection openings'

160 };

161 }

162

 163 #############################

164 sub data_refresh {

165 #############################

166 $STATS =

167 stats_parse($stats_data);

168 $CONNS =

169 conns_parse($conns_data);

170 }

171

 172 #############################

173 sub stats_parse {

174 #############################

175 my ($output) = @_;

176

 177 my $section;

178 my $data = {};

179 my $key = qr/\w[\w\s]+/;

180

 181 for (split /\n/, $output)

182 {

183 if (/($key):$/) {

184 $section = $1;

185 next;

186 }

187 elsif (/($key): (\d+)/) {

188 $data->{$section}

189 ->{$1} = $2;

190 }

191 elsif (/(\d+)\s+($key)/)

192 {

193 $data->{$section}

194 ->{$2} = $1;

195 }

196 else {

197 die

198 "Can't parse line '$_'";

199 }

200 }

201

 202 return $data;

203 }

204

 205 #############################

206 sub conn_sort {

207 #############################

208 return -1

209 if $a->{state} eq

210 "ESTABLISHED";

211 return 1

212 if $b->{state} eq

213 "ESTABLISHED";

214 return 0;

215 }

216

 217 #############################

218 sub col_fmt {

219 #############################

220 my ($cols, $max_space) =

221 @_;

222

 223 my $max_len =

224 max map { length $_ }

225 @$cols;

226 $max_len = $max_space

227 if $max_len > $max_space;

228

 229 return sub {

230 return sprintf(

231 "%${max_len}s",

232 substr(

233 shift, 0,

234 $max_len

235)

236);

237 };

238 }

239

 240 #############################

241 sub conns_parse {

242 #############################

243 my ($output) = @_;

244

 245 my $data = [];

246

 247 for (split /\n/, $output)

248 {

249 my (

250 $proto, $rec,

251 $snd, $local,

252 $remote, $state,

253 $prog

254)

255 = split ' ', $_;

256

 257 next if $proto ne "tcp";

258 push @$data,

259 {

260 local => $local,

261 remote => $remote,

262 state => $state,

263 prog => $prog

264 };

265 }

266

 267 return $data;

268 }

073-078_perl.indd 77 13.02.2008 16:52:07 Uhr

cial variables $a and $b with two values

to be sorted. If conn_sort returns -1,

then $a is “smaller” than $b and thus

migrates up. On the other hand, if +1

is returned, $b moves up. If neither of

these candidates is in the status ESTAB-

LISHED, conn_sort returns the value 0.

Thus, both candiates end up in the

 display somewhere below the ESTAB-

LISHED section.

Formatter as Return Value
To create a good-looking column layout,

the table-like values that appear in the

GUI often must be cut. The function col_

fmt takes two parameters: one is a refer-

ence to an array of all lines of a table

column, and one is the maximum avail-

able width for this column, $max_space.

With the function max from the CPAN

Module List::Util, it calculates the lon-

gest line. If this is smaller than $max_

space, this is the defined width of the

column; otherwise, it is defined by

$max_space.

The formatter, which is returned as a

code reference, receives the lines of a

column and cuts them down to the max-

imum width with substr(). If they are

too short, it fills them with blanks, using

sprintf() if necessary. Each column re-

ceives its own formatter, which makes a

total of four formatters doing their jobs

in nettop. The sum of the values for the

maximum width of all columns is 80,

often the width of the text window. If a

column is clearly smaller than the maxi-

mum space reserved for it, the formatter

gives this up to other columns. Thus, the

display can move somewhat erratically

with varying network traffic, but the

 allocation of space is optimized.

On Screen!
The module Curses::UI::POE does the

graphic output (Figure 2). The display

consists of three parts: a blue header,

$TOP, with the statistical data from net-

stat -s; a listbox, $LBOX, with the cur-

rent network connections (if necessary,

excess entries are hidden); and a blue

footer, $BOTTOM, that only shows the

version of the program.

The parameter paddingspaces is set

to true and therefore has Curses::UI fill

up the right side of the blue header and

footer lines. This way, the blue bars ex-

tend all the way across the screen and

do not vary with the actual length of the

displayed text. The method set_bind-

ing() in line 70 specifies that when the q

key is pressed, the kernel terminates the

program because it calls a function that

executes exit 0 when this event occurs.

Automaton Gets States
The finite automaton of the presentation

layer knows two states: the starting con-

dition _start and the wake up condition

wake_up, in which the automaton up-

dates the screen with the newest data.

Instead of package_states, the parameter

inline_states comes into play in nettop

because the constructor of the POE ses-

sion assigns the state names directly to

anonymous subroutines and does not

refer implicitely to identically named

functions in the same module. Although

wake_up still runs, it sends an event off

to the kernel with delay(), which makes

sure that the kernel will re-execute it

after the number of seconds set in $RE-

FRESH_RATE. Thus, an endless loop is

created, which continuously updates the

terminal at regular intervals.

In wake_up, the call to data_refresh()

first gets the the newest data from the

netstat process that is running via

 PoCoRunner.pm and then squeezes

it into data structures pointed to by

 globally defined variables.

The function top_text() formats the

dynamically updated text in the header

bar and delivers it to the method text()

of the header bar object. So that the

whole thing appears on the screen, the

subsequent call to the method draw() is

necessary.

Something similar applies for the list-

box, whose entries have values (-values)

that are not of interest in this case be-

cause the user isn’t going to select any

list elements. On the other hand, the

 parameter -labels defines what is shown

in the Curses window for each element

of the list and nettop simply sets these

labels likewise to the values already

 defined for the listbox entries.

Smooth Square Dance
In line 74, the mainloop of the graphical

interface starts the POE kernel with all of

the components that have been loaded

so far. The smooth square dance begins

and each second (adjusted by $RE-

FRESH_RATE) the display receives an

update of the data. This does not neces-

sarily mean that new netstat is available.

No race conditions arise in an enviro-

ment in which only one thread is active,

and it is guaranteed that the two scalars

$stats_data and $conns_data filled by

the POE components always contain the

complete data from the last successful

call to netstat.

With additional keyboard input, you

can extend this script, which could split

the screen and show additional details

for a process currently selected in the

listbox. Naturally, instead of netstat, the

output of different utilities can be dis-

played in the same fashion in a top-like

dynamically updated window. ■

Perl: Dynamic netstatPROGRAMMING

78 ISSUE 89 APRIL 2008

[1] Listings for this article:

http://www.linuxpromagazine.com/

resources/article_code

INFO

Figure 3: The monitor written in Perl continually displays all currently running TCP

 connections.

073-078_perl.indd 78 13.02.2008 16:52:07 Uhr

