
Promising projects from the Linux kernel community

KERNEL TRICKS

Userspace Drivers . 28

Cloop . 32

KVM . 37

LogFS . 40

COVER STORY

M
ost Linux users know they can

rely on the kernel without ever

giving it much thought. But if

you do look a little deeper, you’ll find

some evolving technologies that extend

the kernel in interesting ways. This

month we cover some innovations at

the edges of the Linux kernel.

Our first article describes the new

userspace driver model in upcoming ker-

nel versions. In our second story, Klaus

Knopper looks at block device compres-

sion with the Cloop module, which lets

Live CD developers put up to 2GBs on a

700MB CD. We’ll also examine kernel-

based virtualization with KVM, and

we’ll end with a look at the Flash Trans-

lation Layer and the LogFS flash filesys-

tem.

We hope you enjoy this month’s

 Kernel Tricks cover story collection. But

first, read on for a brief introduction to

the brain of Linux.

The Linux Kernel
The term Linux, in the strictest sense,

does not refer to the shiny collection of

software components and applications

that is often known as a Linux distribu-

tion. At the heart of that distribution is

the Linux kernel itself – a complex col-

lection of software routines that takes

control whenever a machine first boots

and periodically (many times each sec-

ond) handles the resource requirements

of applications, manages system hard-

ware devices, and generally does a lot

of the low level dirty work.

The Linux kernel is regarded as a fully

functional, complex, and well-docu-

mented role model for open source soft-

ware. Everyone has access to the source

code, which is updated daily; and ev-

eryone can join in with dis-

cussions on the mailing

lists or submit

patches.

To under-

stand what

the kernel

is really doing, take a look at Figure 1.

The kernel appears in the center of the

diagram, surrounded by a sample of the

operations it assists in performing.

On the left, hardware interrupts from

 devices such as disks, network cards,

sound devices, graphics cards, and so on

arrive at unpredictable times (data has

perhaps been requested, but there is no

way to know exactly when the device

will actually deliver that data). In a simi-

lar way, the system timer (on most sys-

Developers are constantly looking for new ways to interact with the versatile Linux kernel.

This month we study some innovative projects leading deep into kernel space.

BY JON MASTERS, JAN RÄHM, AND JOE CASAD

COVER STORYCover Intro: Kernel Tricks

21ISSUE 86JANUARY 2008

021-026_coverintro.indd 21 16.11.2007 13:32:04 Uhr

tems) fires regularly to allow Linux to

perform periodic housekeeping opera-

tions many times per second.

A kernel would not be particularly

useful if it were not able to also service

the user in the provision of support for

running programs (called tasks, within

the world of the Linux kernel). On the

right side of the diagram are three tasks.

Each represents a different kind of appli-

cation. The first, at the bottom, is a regu-

lar user program – in this case, a Bash

shell running on a user’s desktop. Most

programs don’t communicate with the

kernel directly. Instead, they use the

GNU C Library functions, which in turn

call standard kernel interfaces in order

to provide required services.

Sometimes, an application does not

use the C library but talks to the kernel

more directly instead. This is the case

with certain low-level, statically linked

tools – for example, busybox (commonly

used as a recovery tool, as well as in em-

bedded gadgets such as the Nokia N810

Internet Tablet). In the diagram, you can

see one of these special tools providing

the services of init. Finally, at times the

kernel runs special kernel code as if it

were almost a regular program (but with

privileges).

The key point of Figure 1 is that a ker-

nel is far from magical. Its behaviors and

processes can be explained. Many peo-

ple believe that a kernel is somehow

“running” all the time and constantly

overseeing system operations. Although

it is true that Linux does perform a vari-

ety of system monitoring functions, the

kernel itself should be thought of more

as a collection of software routines in a

privileged library. These specially privi-

leged routines are always executed in

 response to specific events, and at that

time, whatever else was running is tem-

porarily saved as the system switches

into kernel code. Most of the time, ker-

nel code runs either as a result of timers

and hardware interrupts, or as the result

of a request from an application. It also

runs at startup and in various error con-

ditions.

A Little History
The Linux operating system dates back

to Linus Torvalds’ first experiments in

1991. At that time, Linux was merely a

toy operating system alternative. It ran

only on Intel

386-compatible

processors; how-

ever, it was very

hackable, and it

wasn’t long be-

fore Linux was

available for a

wide variety of

different ma-

chines – first

came the more

generic PC sup-

port, but thereaf-

ter, developers

began to port

Linux to other

architectures.

After almost a

decade of devel-

opment, Linux 2.4 was released in the

late 1990s. Linux 2.4 was significant

 because it was the first kernel release

widely used by the masses – not just

computer enthusiasts, but also those try-

ing Linux for the first time on their desk-

top computers, servers, and even embed-

ded gadgets. Version 2.4 was also used

in the new generation of “Enterprise”

distributions from major Linux vendors.

Once Linux 2.4 was safely out of the

way, work began in earnest on a 2.5 de-

velopment series, leading up to a major

2.6 kernel release a few years ago.

Version 2.6 was a complete revolution

for Linux. It had a rewritten scheduler

(that can scale to many thousands of

CPUs by now), a full device manage-

ment subsystem with greatly improved

and re-written dynamic device support,

and literally countless other improve-

ments that came as a result of the grow-

ing acceptance of Linux as a viable com-

mercial offering. By this point, features

weren’t coming in from enthusiasts at

nearly the same rate that they were

being offered by well-known Linux

 hackers employed by Linux vendors and

companies like IBM.

Linux Is Not Just Linus
Although it should be obvious by now,

Linux is not the day-to-day product of

one man’s efforts. Linus Torvalds is

widely recognized as the inventor and

head of the Linux kernel project, but

Linus serves more as a highly skilled

project manager at this point (Figure 2).

From a qualitative point of view, Linus

Figure 1: The Linux kernel manages processes, hardware interrupts, and housekeeping tasks.

Figure 2: Linus Torvalds at the Kernel Summit 2007: the founding

father of the Linux kernel still makes a major contribution to its devel-

opment.

Cover Intro: Kernel TricksCOVER STORY

22 ISSUE 86 JANUARY 2008

021-026_coverintro.indd 22 16.11.2007 13:32:47 Uhr

Anzeige
Nokia

021-026_coverintro.indd 23 16.11.2007 13:33:07 Uhr

may not be the main code developer;

however, he still coordinates releases

and work on the kernel, contributes to

mailing lists, and takes an active part

in discussions on new functions.

Below Linus Torvalds in the kernel

hierarchy are a number of maintainers

supervising work on different parts of

the kernel. A maintainer decides on the

development roadmap, typically in col-

laboration with other developers. An-

drew Morton (Figure 3) is often consid-

ered the second in command of the ker-

nel development team. Morton main-

tains the -mm kernel branch, as well as

various subprojects, such as the develop-

ment of the netdev driver and the Ext3

and Ext4 filesystems.

The MAINTAINERS document in the

main branch of the kernel source pack-

age lists the various maintainers associ-

ated with Linux kernel development.

When you read the document, you may

notice some gaps and that the column

contains an s for orphaned status. These

orphaned projects are projects that no-

body is currently working on. Of course,

the developer community is always

happy for somebody to step in and as-

sume responsibility for an orphaned de-

velopment sector, but if you are new to

kernel development, you should proba-

bly consider sticking to bug fixes and

patches before attempting the main-

tainer role.

Linux Day-to-Day
Development
Linux kernel development takes place on

a minute-by-minute basis, around the

clock, every day of the year. Central

co-ordination happens using the Linux

Kernel Mailing List (LKML), an archive

of which you can find at lkml. org.

 Although general Linux kernel develop-

ment discussion happens on the LKML,

literally dozens of other popular email-

ing lists cover each of the many features

within Linux.

The central repository of Linux kernel

source is held at kernel. org, to which

only a limited number of people have

 direct write access, but from which ev-

eryone can freely download the Linux

source itself. Most developers, however,

don’t download source archives from

kernel. org. They instead “pull” from

Linus’ git repository. Git is the Linux

kernel source management utility writ-

ten by Linus Torvalds.

Tree Structure
The kernel tree structure consists of

four main trees above the branches or

subtrees: main 2.6.x, 2.6.x.y-stable,

2.6.x-git, and 2.6.x-mm. Linus Torvalds

maintains the main 2.6.x tree. When a

new kernel version is imminent, Tor-

valds opens a two-week window in

which developers can send him their

diffs.

In nearly every case, changes destined

for the main tree have been tested in the

-mm kernel over a period of days or

weeks. Andrew Morton’s 2.6.x-mm tree

differs from Torvald’s Vanilla kernel in

that it contains untested changes by

Morton himself or resulting from patches

reviewed by Morton. Morton integrates

changes to all subsystems and patches

from the mailing list with his version.

The -mm branch is regarded as a play-

ground for new developments and fea-

tures. Once a patch has proved its reli-

ability, it is very likely to make it into

Torvalds' kernel tree.

Under normal circumstances, Linus

publishes the first release candidate at

the end of the two-week window. From

then, major changes are typically ruled

out, although Linus Torvalds might

make an exception in case of critical

Figure 3: Andrew Morton is the number two

in kernel development. His -mm branch

 provides the impetus for new features in

the Linux kernel.

Many variants of the Linux kernel are

currently in use. For many reasons –

 including timing of individual product

releases – few distributions ship exactly

the same release of the kernel, and each

may apply different patches that modify

the kernel in some way. For example,

last-minute updates might need to be

made to various sound drivers just be-

fore release, and these may not yet be in

the official Linux kernel from kernel. org.

In some cases, Linux vendors apply

their own optimizations as a means of

adding value. Whatever the reason for

the differences, you should know that it

is unlikely that your Linux system is run-

ning the current “official” Linux kernel

posted at kernel. org.

Which Linux Kernel?

Before you send bug reports or patches

to the kernel community, it makes sense

to keep to a couple of rules: Patches

must be available as diffs. If you have

clearly identified and removed the bug,

the maintainer of the subsystem affected

by the patch is the right person to con-

tact. An undocumented patch is more

or less useless. Add a description of the

bug, the patch itself, and the effect of the

patch to make it easier for the maintainer

to investigate your proposal and, at the

same time, approve your chances of it

being accepted.

Claims such as “This patch makes 2000

lines of code superfluous …” or “I have

tested this patch on five different architec-

tures…” will grab the maintainer's atten-

tion. But mails saying things like: “I’ve

been doing it this way for 20 years, so pay

attention …” are likely to get on the main-

tainer's nerves.

In addition to an unequivocal de-

scription, submitters should note the

 following: Large patches that solve

 complex problems are easier for

the maintainer to investigate if you

split them into several smaller sub-

patches. Maintainers are unlikely to

have much time to investigate work

by a newbie near the end of a merge

window.

Because kernel developers always check

patches before accepting them, you

should keep your patches as simple and

transparent as possible. Unfinished

patches accompanied with a promise to

fix or complete later are typically ignored

or dropped into a black hole. For more

information, read the documents apply-

ing-patches.txt, SubmittingPatches,

 SubmittingDrivers ,and SubmitChecklist

in the kernel source Documentation

 directory.

Constructive Contributions

Cover Intro: Kernel TricksCOVER STORY

24 ISSUE 86 JANUARY 2008

021-026_coverintro.indd 24 16.11.2007 13:33:07 Uhr

drivers or security patches. If everything

works as planned, a second release can-

didate appears after another week. The

differences between the two are typically

no more than cosmetic code modifica-

tions. After the sixth release candidate,

the process is normally completed, and

the next stable version of the Linux ker-

nel is ready.

The 2.6.x.y-stable tree, the kernel ver-

sions with four-digit release numbers,

see only minor changes, with the focus

on security fixes. This branch is consid-

ered particularly reliable. If no version

has a four-digit number, the highest

2.6.x version is typically the most stable.

The 2.6.x-git tree is a daily snapshot

of Torvald’s kernel tree on the Git ver-

sion control system initiated by Linus

himself. This tree is far more experimen-

tal than a release candidate. The snap-

shots are taken automatically without

developer interaction.

Pulling from the git Tree
If you want to experiment with living

like a kernel developer, you can obtain a

list of all of the public git repositories at

git. kernel. org. Browse Linus’ git tree at:

http:// git. kernel. org/ ?p=linux/ kernel/

 git/ torvalds/ linux-2. 6. git;a=summary.

To obtain a copy of this development

tree for your own uses, you first need

to make sure you have the git tools in-

stalled. Linux distributions typically

Figure 4: Linux source code is maintained through the git code management tool, which was

designed and developed by Linus himself.

COVER STORYCover Intro: Kernel Tricks

021-026_coverintro.indd 25 16.11.2007 13:33:16 Uhr

 include the git tools, which you can

 install using:

$ yum install git U

Fedora and OpenSUSE systems

$ apt-get install git U

Debian and Ubuntu systems

You can also install these tools from

source, which is available directly from

git. kernel. org.

Once you have installed git, you can

use it to obtain the latest release of

Linus’ code tree:

$ git cloneU

git:// git.kernel.org/ pub/U

scm/ linux/ kernel/ git/ torvalds/U

linux-2.6.git linus-2.6

This command will place a copy of

Linus’ kernel in a local directory called

linus-2.6. To update this copy to the lat-

est version, at any time, simply go to

that directory and type:

$ git pull

You can find a complete set of git com-

mands in the git reference documenta-

tion. Don’t forget to experiment with the

gitk utility if you would like a graphical

source browser. Once you have copied

the code to the linus-2.6 directory, you

can build the kernel as usual (see the

box titled “Building the Kernel”), or you

can just study the code to learn more

about the art of kernel programming.

Further Reading
If you are getting started with Linux ker-

nel development, try joining the Linux

Kernel Newbies project http:// www.

 kernelnewbies. org/. Here, you can meet

with like-minded people who help each

other learn about the Linux kernel. You

might also want to try the Kernel Jani-

tors Project – an ongoing effort at mak-

ing various trivial cleanups to the Linux

kernel source tree (a great way to get

started). You’ll even find a kernelnew-

bies Facebook group.

Although there is no substitute for

reading the Linux Kernel Mailing List

(LKML) if you want to keep on top of

 individual patches as they are posted,

most people don’t have nearly enough

time in their day for such things. Espe-

cially those people who are not paid to

follow the development so closely. This

is why online resources such as Linux

Weekly News (LWN) were created. For a

small contribution of less than US$ 10

per month, you can read the latest (and

highly detailed) summaries of kernel de-

velopment from Jonathan Corbet (au-

thor of Linux Device Drivers and a long-

time Linux kernel hacker). Even if you

don’t feel like subscribing, you can al-

ways read postings from previous weeks

for free online. �

The steps for building the Linux kernel

may vary from one distribution to an-

other (your distribution will supply an

example of how to do this for modern

2.6 Linux kernels). This brief summary

is intended for illustration purposes.

Consult your vendor documentation.

In the case of a Fedora-like system, you’d

first want to install the standard Fedora

kernel config file from your /boot directory:

$ cp /boot/config- U

`uname -r` .config

$ make oldconfig

Linux supports a variety of make targets,

including both oldconfig, menuconfig,

and many others. The oldconfig com-

mand will pull in existing selections from

the .config file that was supplied by your

Linux vendor, though there will likely be

some differences in configuration options

(you will be prompted about these, and

offered some help in deciding appropriate

options), so don’t get too flustered when

these come up. Once you have imported

an existing configuration, you can also

run the menuconfig target for a visual

menu of available configuration options:

$ make menuconfig

After saving the kernel, you can build it

using:

$ make

and install the updated kernel modules

using:

$ make modules_install

Finally, you will need to rebuild any

 initial ramdisk (initrd/ initramfs) that

you are using. Your distribution will

have more detail, but in the case of

a Fedora system, try a command similar

to:

$ mkinird /boot/initrd=U

initrd-2.6.x.y 2.6.x.y

where x.y reflects whatever version

of the 2.6 Linux kernel you just built.

You will then need to update your boot-

loader (such as grub) by editing /boot/

grub/menu.lst to reference your new

 kernel before you can try test booting

it. Most major Linux vendor distributions

include tools to help with this. Fedora

provides the new-kernel-pkg command,

which automates the last two steps

 (rebuilding the initrd and installing the

modified grub bootloader entries).

Building the Kernel

Figure 5: The Linux Kernel Archive at kernel.org is the epicenter for Linux kernel development.

Cover Intro: Kernel TricksCOVER STORY

26 ISSUE 86 JANUARY 2008

021-026_coverintro.indd 26 16.11.2007 13:33:23 Uhr

