
40

F
lash memory was once reserved

for embedded applications. Over

the course of the past few years,

however, prices have fallen drastically

for flash in the form of USB sticks, as

well as the memory cards used in cam-

eras, PDAs, cellphones, solid state

drives, and MP3 players. Users increas-

ingly need to access flash memory de-

vices with ordinary Linux systems, and

the Linux community is responding with

better tools for addressing the challenges

of flash.

LogFS is a recent

entry into the race

for a flash-ready

Linux filesystem.

Flash
Translation
Layer
On today’s systems,

a normal applica-

tion may not even

be aware of whether

it is using flash

memory or an ordi-

nary filesystem. Responsibility for com-

municating with the device is placed

firmly in the hands of the hardware or

the kernel. A Flash Translation Layer, or

FTL for short, was introduced to the ker-

nel around the year 2000. The layer han-

dles the special quirks of addressing

flash memory.

FTL is designed to let the filesystem

read and write sectors without knowing

how the memory is organized, and with-

out bothering to delete before writing

(see "Flash Technology" box). At pres-

ent, the Linux kernel supports five FTL

variants in the memory subsystem.

Because filesystem blocks are far

smaller than flash blocks, FTL optimizes

write access by collating changes to save

deletion and write cycles, thereby im-

proving the longevity and throughput of

the chip. This technique requires man-

agement structures (such as block map-

ping) that collaborate with garbage col-

lection. The controller handles this in

the case of, for example, a compact flash

card (CF) or a USB memory stick, serv-

Flash memory and the LogFS filesystem

FRIEND OF FLASH
Flash is now an everyday part of the Linux environment. The new LogFS filesystem will help you contend

with the problems of flash memory. BY JAN KLEINERT AND ACHIM LEITNER

s
a
n

d
ra

 z
u

e
rle

in
, F

o
to

lia
LogFSCOVER STORY

40 ISSUE 86 JANUARY 2008

Figure 1: LogFS writes changes out of place. In the tree structure (a) it creates a modified block at a new position (b)

and leaves the old block unchanged. The change is not yet linked, and Log-FS thus needs to create the parent node

(c). The new structure does not apply until the root node has been processed (d). This keeps the filesystem in a

consistent state.

a b c d

040-041_logfs.indd 40 14.11.2007 19:00:25 Uhr

41

ing a normal ATA interface to the sys-

tem. Filesystems such as ext2 or FAT are

not optimized for use with flash mem-

ory. The FTL does not even know if a

block has been deleted because the file-

system does not pass this information to

the block layer. This makes garbage col-

lection far more difficult.

Introducing LogFS
Special systems such as JFFS2 (Journal-

ing Flash File System 2 [1], a develop-

ment based on the original JFFS [2]),

UBIFS [3], or YAFFS [4] step in to ad-

dress the complications posed by flash

memory. The name “Journaling Flash

Filesystem” is unfortunate because JFFS

really uses a log-based structure. A new

shooting star in this part of the Linux

sky is LogFS [5], which should not be

confused with the now-defunct Log

Structured File System (LFS) project [6].

LogFS vs. JFFS2
Jörn Engel, the LogFS maintainer, is po-

sitioning LogFS against JFFS2. Engel ex-

pects to score points against JFFS2 on is-

sues such as performance. For example,

Engel claims it takes up to 15 minutes to

mount a 1GB USB stick in JFFS.

Moving Trees
The clever thing about LogFS is its tree-

style management structure. LogFS

doesn’t delete and write modified blocks

in place, but deposits the

contents at the end of the

used memory area. Thus,

it collates changes that

cover the segments of

several erase blocks – like

the garbage collection

methods in FTD.

To update the tree

structure, LogFS rewrites

all the branches from the

modified block down to

the root at the end of the

flash memory in use, thus

implicitly declaring all previously used

blocks as free memory (Figure 1). On

mounting a LogFS device, the driver

searches for the last root node. The data

structure will be consistent below this

node. This approach saves delete and

write actions.

Using LogFS
To use LogFS, you need to patch the va-

nilla kernel source. The LogFS site [5]

has patches for Linux 2.6.18, 2.6.20,

2.6.21, and 2.6.23. The mklogfs tool is

available from the same source.

After configuring, building, and boot-

ing, you can create a Memory Technol-

ogy Device (MTD [7]) mklogfs /dev/

mtd0 and mount the device on the file-

system: mount mtd0 /mnt -t logfs.

LogFS is currently under development.

Jörn Engel says that his filesystem still

updates the tree too often [5] and thus

gives away performance. We can only

wish him good luck with LogFS.

Alternative Solutions
Developers use several approaches to ad-

dress the complications of the Flash ar-

chitecture. This article showed how to

cope with these flash technical issues at

the block layer (with FTL) and through

the filesystem (with LogFS).

Other options are to address flash is-

sues at the device level or to build sup-

port directly into the application, a tech-

nique often used with highly specialized

embedded applications. �

COVER STORYLogFS

41ISSUE 86JANUARY 2008

Flash EEPROMs are memory chips with

non-volatile content; that is, they retain

data without a power supply. Because of

the small footprint of the chips and the

low manufacturing prices, NAND flash

chips that connect a certain number of

flash transistors (floating gates) in series

are typically used. Because selective

write operations only toggle the logical

state from false to true, a logical opera-

tion is required prior to each write to in-

troduce a delete cycle.

Blockwise Deletion

In contrast to normal EEPROM memory,

a Flash EEPROM cannot delete a single

word, the smallest addressable memory

unit (8 to 64 bits) individually, but only a

block. A block is typically a quarter,

eighth, sixteenth, and so on of the total

memory capacity of the chip. These

 EEPROM blocks (also known as erase

blocks) are far bigger than the blocks

that legacy filesystems use. At the same

time, the number of deletion cycles (en-

durance) is limited. Manufacturers will

not guarantee more than 100,000 to a

million cycles for each block.

The reason for wear and tear is that

 electrons in the floating gates tunnel

through the oxide layer of the transistor

on deletion (a phenomenon known

as the Fowler-Nordheim tunnel effect).

The high voltage required for this

 quantum mechanical effect damages

the oxide layer surrounding the floating

gate slightly each time a delete occurs

(see Figure 2). Once the degeneration

 process has reached a certain threshold,

the electrons trapped in the transistor

start to escape; the bit stored at this

 location is lost, and the memory cell

is defective. Flash device vendors

 attempt to counteract this effect by

 including reserve cells and defect

 management to map out defective

blocks.

Flash Technology

[1] JFFS 2:

http:// sources. redhat. com/ jffs2/

[2] JFFS: http:// developer. axis. com/ old/

 software/ jffs/ index. html

[3] UBIFS: http:// www. linux-mtd.

 infradead. org/ doc/ ubifs. html

[4] YAFFS: http:// www. yaffs. net

[5] LogFS: http:// www. logfs. org/ logfs/

[6] LFS: http:// logfs. sourceforge. net

[7] MTD: http:// linux-mtd. infradead. org

INFO

Figure 2: The oxide layer surrounding the floating gate pre-

vents the electrons from escaping. (Fig. source: Wikipedia).

p

n n

Source Drain

Control Gate

Floating Gate

Oxide Layer

Advantages:

• Short access times

• Low energy consumption

• Data retention without a power

• Resistance to shocks and magnetic

fields

Disadvantages:

• Slow write operations

• Deletions by sector only

• Limited number of write cycles

• More expensive than alternatives

NAND Flashes

040-041_logfs.indd 41 14.11.2007 19:00:35 Uhr

