
24

Two of the major standards bod-
ies, OASIS and the W3C, recently
released a flurry of standards

dealing with web services. Because most
of these standards have names that start
with WS, the standards are loosely
known as WS-* or (less formally)
WS-splat.

In this article, I will examine one of
the key pieces, WS-Addressing, and ex-
plain how it can enhance existing web
service applications and ultimately bring
powerful new messaging patterns into
the web services world.

The W3C Web Services Addressing
standard (or WS-Addressing, or just
WSA) attempts to give web clients and
servers – particularly those using SOAP –
more flexibility in communicating with
each other. WSA provides a standard
way for defining an Endpoint Reference
(EPR) – a structure that denotes the ad-
dress of a service along with any other
information needed for delivery.

WSA also defines a standard set of
properties called Message Addressing
Properties (MAPs) that are much like the
headers on an email message. MAPs

WS-Addressing is a standard that enables flexible communication

between web services. BY DAVID HULL

Asynchronous delivery with WS-Addressing

SPECIAL
DELIVERY

David Hull is a co-editor of the
OASIS WS-BaseNotification stan-
dard. He participated in drafting of
the W3C WS-Addressing standards
and the SOAP one-way MEP. He
blogs at http://fieldnotesontheweb.
blogspot. com.T

H
E

 A
U

T
H

O
R

J
a
m

es S
teid

l, Foto
lia

convey important data such as the
sender’s address, the receiver’s address,
a unique ID for the message, and ad-
dresses for replies and faults.

These basic facilities support a great
variety of interactions. In this article, I
will focus on one of the main use cases
associated with WSA: the asynchronous
request-response pattern. The WS-Ad-
dressing specifications of interest for this

WS-AddressingCOVER STORY

24 ISSUE 84 NOVEMBER 2007

article are W3C recommenda-
tions, as is a “Metadata” doc-
ument aimed at integrating
WS-Addressing with WSDL
and WS-Policy.

Asynchronous
Request-Response
If you’ve ever enclosed a self-
addressed, stamped envelope
with a letter, you’ve partici-
pated in an asynchronous
request-response. In other
words, you have sent a re-
quest that includes a way for
your counterpart to send a re-
sponse back to you later. In
the networking world it’s the
“self-addressed” part that is
important. Stamps and enve-
lopes are already provided.

Suppose I want a price
quote for some service pro-
vided by Example Industries.
Their web site at www.
example. com could provide a
front-end for accepting price
requests, and it could even
provide this as a SOAP ser-
vice and advertise it using
WSDL. If you want a quote,
you send a request, and the
server at example. com sends
you back a response with the
quote. Toolkits like Apache
make it easy to generate the
server code and WSDL from a
business class you write. In
practice, the client uses HTTP
to POST a SOAP request, and
the server sends back its

SOAP response in the HTTP
response. So far, so good.

In many industries, how-
ever, putting together a price
quote requires some thought
on the part of an estimator. If
I’m requesting a price quote,
I don’t want to have to wait
until the person who will re-
spond to the quote is back in
the office. Or, even if the esti-
mator is in the office, I don’t
want to try to keep my HTTP
connection open until the es-
timator is done thinking it
over. I would really like to
send in the request, hang up
the connection, and have the
reply come back to me later.

From a certain point of
view, this is still very much a
request-response operation.
If I were using SOAP, I would
send a SOAP request, and Ex-
ample Industries would send
me back a SOAP response,
just not over the same con-
nection. However, from the
point of view of the web ser-
vices stack (and the commit-
tees charged with specifying
that stack) this is something
different, since the response
is no longer coming back on
the same connection that de-
livered the request.

WS-Addressing
For many years after the in-
troduction of SOAP, there was
no standard way to imple-

Asynchronous delivery with WS-Addressing

SPECIAL
DELIVERY

Figure 1: The World Wide Web Consortium (W3C) develops standards

for web technologies.

Advertisement

ment this pattern. Where do I put the re-
turn address for the response? In some
new HTTP header? In a SOAP header?
Called what? Maybe somewhere in the
body of the request itself? What should
the server send back as an HTTP re-
sponse, since the real response is going
to go over some other connection? Or
should the server just close the connec-
tion without sending anything? Should I
just give the return address as a raw
URI? What if there is other information
the server needs to know to deliver a re-
sponse? If I’m sending several price re-
quests to the same vendor, how can I tell
which response goes with which re-
quest? Another HTTP header? A SOAP
header? Something else?

Answers
WSA is aimed directly at addressing
these questions. An EPR specifies a des-
tination URI, together with other infor-
mation needed for delivery, such as a set
of SOAP headers to insert into the re-
sponse message. This extra information
provides a place to put cookies like
transaction IDs, as well as policy asser-
tions about security and reliability. EPRs
act very much like function pointers or
callback objects in programming lan-

guages, and they provide a similar de-
gree of expressive power.

MAPs, which are represented in SOAP
as header elements, carry the return ad-
dress, a message id for correlation, and

similar information. MAPs look quite a
bit like the reply-to and message-id head-
ers in email, and for good reason. The
email headers work well in practice, so
why not steal from the best?

The WS-Addressing core specification
gives rules for the server to follow when
it gets a message with MAPs attached.
Basically, send the reply to the reply-to
address (called the [reply endpoint] in
the spec and ReplyTo on the wire) and
mark the response with the [message id]
of the request. The committee also
drafted a note saying how to handle
HTTP requests with no immediate
response – namely by sending back a
dummy message with HTTP status code
202. This is what most pre-standard im-
plementations already did.

The Example in Action
So far, I haven’t explained how the re-
sponse is supposed to get back if not as
the HTTP response. There are any num-
ber of ways the server might send the re-
sponse. For instance, the server might
use email or an instant messaging ser-
vice to respond to the request.

I will assume the server is going to use
a second HTTP connection. That is,
when the response is ready, the server
will open a connection back to the HTTP
server I’ve designated in the [reply end-

01 POST /Widget HTTP/1.1

02 Host: estimates.example.org

03 Content-Type: application/soap+xml; charset=utf-8

04 Content-Length: nnn

05 <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

06 xmlns:wsa="http://www.w3.org/2005/08/addressing">

07 <S:Header>

08 <wsa:MessageID>http://example.com/request-id-1</wsa:MessageID>

09 <wsa:ReplyTo>

10 <wsa:Address>http://example.com/business/client1</wsa:Address>

11 </wsa:ReplyTo>

12 <wsa:To>http://estimates.example.org/Widget</wsa:To>

13 <wsa:Action>http://example.com/EstimateRequest</wsa:Action>

14 </S:Header>

15 <S:Body>

16 <ex:EstimateRequest xmlns:ex=?http://example.com/estimate?>

17 <ex:Item>retro-confabulator</ex:Item>

18 <ex:Quantity>42</ex:Quantity>

19 <ex:Note>I need this in one standard galactic week</ex:Note>

20 </ex:EstimateRequest>

21 </S:Body>

22 </S:Envelope>

Listing 1: Asynchronous Request with WSA

01 POST /business/client1 HTTP/1.1

02 Host: example.com

03 Content-Type: application/soap+xml; charset=utf-8

04 Content-Length: nnn

05 <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

06 xmlns:wsa="http://www.w3.org/2005/08/addressing">

07 <S:Header>

08 <wsa:RelatesTo>http://example.com/request-id-1</wsa:RelatesTo>

09 <wsa:To>http://example.com/business/client1</wsa:To>

10 <wsa:Action>http://example.com/EstimateResponse</wsa:Action>

11 </S:Header>

12 <S:Body>

13 <ex:EstimateResponse xmlns:ex=?http://example.com/estimate?>

14 <ex:Item>retro-confabulator</ex:Item>

15 <ex:Quantity>42</ex:Quantity>

16 <ex:Price type=?each? currency=?USD?>1000000</ex:Price>

17 <ex:Note>We have only 17 retro-confabulators in stock. The
rest will be shipped directly from the manufacturer</ex:Note>

18 </ex:EstimateResponse>

19 </S:Body>

20 </S:Envelope>

Listing 2: POSTed Response to Request

WS-AddressingCOVER STORY

26 ISSUE 84 NOVEMBER 2007

point] and POST the answer to me. The
server will not be expecting a full-
fledged HTTP response but will expect
me to send back a dummy message with
status 202 as it did when I POSTed my
request. Listings 1 and 2 show what the
resulting exchange might look like on
the wire. Note the WSA header elements
ReplyTo and MessageId in the request
(Listing 1) and RelatesTo in the response
(Listing 2).

At the application level, this exchange
can be seen as two one-way messages: a
request from me to the server, and a re-
sponse from the server back to me. On
the other hand, as far as HTTP is con-
cerned, there are two request-response
operations. Note that in neither of these
messages is the HTTP server acting as a
server in the usual sense. It is not serv-
ing some resource to the server at exam-
ple. com. It is merely receiving a message
and sending back a dummy response.

Mistakes Happen
Suppose I make a mistake in putting my
request together. Maybe I leave out some

element that’s required for a price re-
quest. In such a case, I would expect a
SOAP fault to come back.

There is no need for the estimator to
get involved, or for me to wait for the
estimator to do anything. The server
can detect the error immediately and
send me back an error directly on the
HTTP response.

By default, WS-Addressing requires
that faults be sent to the same destina-
tion as replies, that is, the [reply end-
point]. (The full story is a bit more in-
volved, but the details aren’t important
here.) This behavior is not what I want
in this case. If there’s a fault, I want to
know about it right away.

WS-Addressing provides a property
just for this purpose, namely, the [fault
endpoint] property, seen on the wire as
FaultTo.

If I want faults sent differently from
normal replies, all I have to do is give a
different destination for them, and the
server will know to send the faults to
that destination instead of sending the
faults as replies. The URI for “use the

HTTP response” can’t be the address I
gave for the reply. Using that would re-
quire the server to open up a second
connection for the fault, which is just
what I don’t want. WS-Addressing pro-
vides a special URI just for such cases,
called the anonymous URI.

Listings 3 and 4 show what the result
looks like on the wire. Note the addition
of the FaultTo header, and note also that
there is now only one connection, with
the fault coming back as it always would
have even without WS-Addressing.

Normal reply messages will still go to
my HTTP endpoint, but faults come di-
rectly back.

Apache Axis
Implementing this technique with
Apache Axis is simple. Axis now gener-
ates WSA-aware server code, so you
don’t need to do anything new on the
server side.

If the Apache server code sees WSA
SOAP headers, it follows the WSA rules.
Otherwise, it behaves as it always has.
You need to add two lines of code when

Advertisement

COVER STORYWS-Addressing

setting up the client, but everything else
works as before.

“Please don’t post responses to the list.
Email them to me at … and I’ll summa-
rize.” From one point of view, the asyn-
chronous request-response pattern is
just a small variant on the usual request-
response. I still send a request, and I still
get a response – just delivered to me a
different way.

From another point of view, however,
the WSA and the asynchronous request-
response pattern provide the jumping off
point for a whole family of interactions.
To implement the request-response vari-
ant, we have to introduce some fairly
powerful machinery, including the
equivalent of a function pointer. This
machinery can be put to other uses, too.

One Response
In standard request-response, I know I
will get exactly one response for each re-
quest (counting faults as responses).
This will generally be true of asynchro-
nous request-response as well, though
it’s now possible for the response to fail
independently of the request.

The “one-request, one-response” rule
doesn’t have to hold in general. For ex-

ample, I could broadcast a request mes-
sage to any number of recipients, and
they could respond – or not – as they see
fit. I would then get zero or more re-
sponses for a given request. This ap-
proach would be good for soliciting bids,
or for any number of “discovery” scenar-
ios where I would like to find something
by asking a group of possible providers.

Another important example is publica-
tion/ subscription scenarios. One or more
publishers sends information on a
“topic,” and zero or more subscribers
could listen to that topic. For subscribers
to get notifications sent to the topic,
something will have to say where to de-
liver them. EPRs fit the bill perfectly –
both the OASIS WS-Notification standard
and Microsoft’s WS-Eventing use EPRs
for this purpose.

Conclusions
Apache Axis provides for a number of
powerful request-response scenarios
through its support of WS-Addressing
and “one-way” messaging. Naturally,
programmers have been writing code for
responding to messages long before Axis
or even HTTP.

The advantage of WSA is that now
these responses can take a standard
form using conventional Internet proto-
cols and off-the-shelf software. ■

01 POST /Widget HTTP/1.1

02 Host: estimates.example.org

03 Content-Type: application/soap+xml; charset=utf-8

04 Content-Length: nnn

05 <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

06 xmlns:wsa="http://www.w3.org/2005/08/addressing">

07 <S:Header>

08 <wsa:MessageID>http://example.com/request-id-2</wsa:MessageID>

09 <wsa:ReplyTo>

10 <wsa:Address>http://example.com/business/client1</wsa:Address>

11 </wsa:ReplyTo>

12 <wsa:FaultTo>

13 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</
wsa:Address>

14 </wsa:FaultTo>

15 <wsa:To>http://estimates.example.org/Widget</wsa:To>

16 <wsa:Action>http://example.com/EstimateRequest</wsa:Action>

17 </S:Header>

18 <S:Body>

19 <ex:EstimateRequest xmlns:ex=?http://example.com/estimate?>

20 <ex:Item>retro-confabulator</ex:Item><!-- Oops, no quantity!
-->

21 </ex:EstimateRequest>

22 </S:Body>

23 </S:Envelope>

Listing 3: Request with FaultTo anonymous

01 HTTP/1.1 400 BAD REQUEST

02 Content-Type: application/soap+xml; charset=utf-8

03 Content-Length: nnn

04 <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

05 xmlns:wsa="http://www.w3.org/2005/08/addressing">

06 <S:Header>

07 <wsa:RelatesTo>http://example.com/request-id-2</wsa:RelatesTo>

08 <wsa:To>http://example.com/business/client1</wsa:To>

09 <wsa:Action>http://example.com/EstimateRequestFault</wsa:Action>

10 </S:Header>

11 <S:Body>

12 <S:Fault>

13 <S:Code>

14 <S:Value>MissingQuantity</S:Value>

15 </S:Code>

16 <S:Reason>

17 <S:Text xml:lang="en">No quantity given in request</S:Text>

18 </S:Reason>

19 </S:Fault>

20 </S:Body>

21 </S:Envelope>

Listing 4: Response to faulty request

WS-AddressingCOVER STORY

28 ISSUE 84 NOVEMBER 2007

