
PHP tools are typically all you need for
any kind of text manipulation, such as
modifying configuration files, log files,
user management entries, and the like. If
you need to access operating system
functions for tasks such as process man-
agement, you will need to add a few
Linux commands.

Command Line
PHP has four functions designed for exe-
cuting command lines: exec(), system(),
passthru(), and shell_exec():
• exec() executes the command that is

passed to it as the first parameter and
suppresses any output from the com-
mand. The last line of output is
returned as a result. If the second

parameter is the name of an array,
exec() fills the array line by line with
the output that would have appeared
on screen. If you need to process the
exit code for exec(), you can use the
third parameter to do so.

• system() does not suppress output, in
contrast to exec(). It has a second
optional parameter for the exit code.

• passthru() works like system(), but in
a binary compatible way. This allows
the command to pass images gener-
ated as converter output to a web
browser.

• shell_exec() works like the single para-
meter version of exec(), but instead of
outputting the last line, it returns a
string with the complete command
output. The string contains newline
characters, in contrast to the entries in
the exec() return value array.

Both exec() and shell_exec() are useful in
cases where you need to manipulate the
text output from an external command.
The following examples use exec(),
which is more flexible than the other
functions. There is a small glitch
involved with this at present: PHP does
not always return the external program’s

PHP scripts written for the console
are basically the same as scripts
written for the web: programmers

can use the whole range of PHP features.
To allow simple, program name based ex-
ecution of scripts on the command-line,
you need to specify the PHP interpreter in
the first line of the script following #!. If
you do not know the path to the inter-
preter, you can type which php to find
out. Also, the script file needs to be exe-
cutable. Let’s take a look at the ubi-
quitous “Hello, World” example in PHP:

#!/usr/bin/php -q
<?php

echo "Hello, World\n";
?>

Most admins tend to use the shell,

Perl, or Python if they need a system

administration script. But there is no

need for web programmers to learn

another language just to script a

routine task. PHP gives admins the

power to program command-line

tools and even complete web inter-

faces. BY CARSTEN MÖHRKE

Using PHP in administration scripts

Delivering Commands

56 January 2005 www.linux-magazine.com

PHP for SysadminsSYSADMIN

PHP version 4.3.0 or later has a new shell
interface for programming command
line tools: the CLI (Command Line Interface).
Previous versions of PHP (and even some
newer versions) had a program interface
called Server Application Programmers
Interface (SAPI), but SAPI was designed
for use on web servers (CGI-SAPI) and
added a HTTP header to output. (You can

suppress the header by setting the -q
option when you launch PHP, but this will
not remove HTML tags from error
messages.)
You can can check if you have the CGI ver-
sion, which does not have the same
feature-scope as the command-line inter-
face, by typing php -v.The examples in this
article will work with either version.

Old and New Shell Interface

w
w

w
.sxc.hu

exit code correctly (for example when
concatenating commands).

Process Control
The following PHP script uses exec() to
output the number of processes running
on a system:

unset ($out);
$cmd="ps axu | wc -l";
$erg=exec($cmd,$out);
$erg-=1; //minus 1 line header
echo "Number of active U

processes is $erg\n";

The script first deletes the content of the
$out variable, which represents the array
that will be storing the command output.
exec() would not overwrite the array but
simply append to it. The example avoids
mixing up the results from multiple
scripts by first flushing the array. The
command discovers the number of lines
in the process list and then subtracts one
line for the column headings.

shell_exec() and exec() can only han-
dle data from stdout. To catch standard
error output from stderr, you need to
redirect error output to stdout: 2>&1.

Programmers often need to pass com-
mand-line arguments to a script. To
allow this to happen, PHP enters the
arguments that follow a filename in the
command line into an array called $argv,
keeping the original order. Additionally,
the number of arguments is stored in the
$argc variable.

Good Arguments
PHP does not support commands that
read data directly from the keyboard. To
provide support for keyboard entries,
programmers can open the stdin stream
as a file function and read from the file.
This allows use of the related stdout and
stderr streams:

$in=fopen("php://stdin","r");
$err=fopen("php://stdin","w");
$input=trim(fgets($fp, 100));
while (""==$input)
{

fputs($err,"Please input a U

value\n");
}

If you use stdin to read keyboard input in
this way, your script should trim() the

data to remove whitespace at the end of
the string. There is no need to use stdout
for data output, as PHP has the echo and
print functions for this task. Output from
both commands can be redirected.

Colorful
To design a more comfortable applica-
tion, programmers need functions to
delete the screen, control the cursor, and
add color to output. ANSI sequences [1]
provide a useful solution, as the shell is
capable of interpreting them. These
sequences start with the Escape charac-
ter and are better known as Escape
sequences. For example, echo "\033[2J"
clears the screen. Table 1 lists a few of
the most important sequences.

The selected color stays valid until a
different color is selected. The PHP
ncurses function provides more portabil-
ity and a much wider range of features.
See the examples on the PHP or Zend
homepages at [2], [3] for more details.

PHP-based User
Management
The following example demonstrates the
functions referred to thus far in the con-
text of a script for user management on a
server for training purposes. Figure 1
shows the menu this code creates. List-
ing 1 is just an excerpt, and the complete
script is available for
download at [4].

You may note that
the script opens stan-
dard input with
fopen() but does not
use fclose() to close
it. As PHP automati-
cally closes open
streams when the
program finishes, the
script avoids closing

the stream for readability reasons. The
execution time for command-line pro-
grams is not restricted.

PHP is ideal for creating web inter-
faces. This attractive option has a few
hidden pitfalls. When designing the
application, you need to consider the
potential security risk. The smallest of
security holes could have fatal conse-
quences. An example:

01 <form method="POST">
02 Command: <input name=

"cmd" />

03 <input type=

"submit"value=
"Execute" />

04 </form>
05 <?php
06 if (isset ($_POST['cmd']))
07 {
08 $outp=shell_exec

($_POST[cmd]);
09 echo "<pre>$outp</pre>";
10 }
11 ?>

Solutions that will execute arbitrary
commands (like this one) are out of the
question. Administrative scripts should
only be executable within a secure envi-
ronment, and they should not allow any
leeway for manipulation.

Special Privileges
Scripts often need root privileges. A web-
based PHP script normally runs with the
privileges of the web server user ID. It
might seem obvious to give this user –
typically www, wwwrun, or nobody –
more wide-ranging privileges, but this is
extremely dangerous. Commands like
sudo or su provide an alternative
approach. However, su requires the inse-
cure practice of adding the clear text root
password to your script.

57www.linux-magazine.com January 2005

SYSADMINPHP for Sysadmins

Figure 1: The menu of a PHP script for user management.

Meaning Sequence
Clear screen \033[2J
Cursor to position x,y \033[x;yH
Cursor n characters left \033[nC
Cursor n characters up \033[nA
Font color red \033[0;31m
Font color black \033[0;30m
Font color green \033[0;32m
Font color light gray \033[0;37m

Table 1: Important ANSI
Sequences

ensures that entries comply with the
rules and do not conflict.

The generic syntax for assigning privi-
leges with sudo is: WHO WHERE =
WHAT. WHO can be a user name, like in
our example, or a group of users, which
needs to be defined using User_Alias.
WHERE means the host where the user
will have these privileges.

Changing Identity
Thanks to the entry in the sudo configu-
ration file, webadmin can now kill
arbitrary processes after entering the
password for the user account. An auto-
mated script would stop and prompt for
the password before continuing. There is
a workaround for this that involves using
sudo’s -S parameter to tell sudo to read
the password from standard input. The
command line so far is as follows: echo
geheim | sudo -S kill 13221

If the webadmin user is not the root
user of the web server from the
viewpoint of the Unix processes – this
would mean scripts inheriting the user’s
privileges, which is probably undesirable
in most cases – you will probably need a
combination of su and sudo. The web

server user first assumes the identity of
webadmin temporarily by running su,
and is then assigned root privileges for
specific commands via sudo. A script that
uses this approach might look like this:

$user="webadmin"; //sudoer
$pwd="geheim"; U

// Webadmin password
$befehl="kill -9§ §
".escapeshellarg($_GET
["pid"]);
$cmd_line="echo $pwd | U

su -l $user -c
\"echo $pwd | sudo -S U

$command 2>&1\"";
$ret=shell_exec($cmd_line);

The script first uses escape-shellargs() to
manipulate the pid, which it parses from
a form. This removes the potential for
shell injection attacks, which might oth-
erwise insert malevolent code. ■

The sudo tool also can assign root
privileges for specific actions to a user
without that user needing to know the
root password. Instead, users authenti-
cate with their own passwords and are
assigned the privileges specified by root
in the /etc/sudoers file. If an admin needs
to assign the webadmin user the right to
terminate processes with the kill com-
mand, he or she could add the following
line to /etc/sudoers:

webadmin ALL = /bin/kill, U

/usr/bin/killall

It is a good idea to use the special visudo
editor for this. The editor ensures that
only one user can edit the configuration
file at any one time. It additionally

58 January 2005 www.linux-magazine.com

PHP for SysadminsSYSADMIN

[1] ANSI codes: http://en.wikipedia.org/wiki/
ANSI_escape_code

[2] Ncurses function manual: http://www.
php.net/ncurses

[3] Ncurses tutorial: http://www.zend.com/
zend/tut/tut-degan.php

[4] Listing: http://www.linux-magazine.com/
Magazine/Downloads/50

INFO

Carsten Möhrke is a freelance consul-
tant and trainer, the author of
“Better PHP Programming”, and the
CEO of Netviser.You can contact
Carsten at cmoehrke@netviser.de.

T
H

E
 A

U
T

H
O

R

01 #!/usr/bin/php -q
02 <?php
03 function cls()
04 {
05 echo "\033[2J"; //Clear

screen
06 echo "\033[0;0H"; // Cursor

to 0,0
07 }
08
09 function text_red()
10 {
11 echo "\033[0;31m";
12 }
13
14 function text_black()
15 {
16 echo "\033[0;30m";
17 }
18
19 // Additional functions
20
21 // Has a user name been input?
22 $in=fopen("php://stdin","r");
23 $err=fopen("php://stderr","w");
24 if (3==$argc &&
25 "-u"==$argv[1] &&
26 isset($argv[2]))

27 {
28 $user=$argv[2]; // read

username
29 }
30 else
31 { // no username input
32 fputs($err,"Please use -u

to input a user name\n");
33 exit(1);
34 }
35 // Function to check if user

exists
36 // with etc/passwd
37 if (false ===

user_exists($user))
38 {
39 fputs($err,"User name does

not exist\n");
40 exit(2);
41 }
42
43 while (1) //Endless processing

loops
44 {
45 cls();
46 text_red();
47 echo "Administration for

user $user\n";

48 text_black();
49 echo "1) Check

consistency\n";
50 echo "2) Create MySQL DB

for user\n";
51 // More Menu Items
52 echo "q) Quit

Program\n\n";
53 echo "Please select: ";
54 // Remove whitespace from

input
55

$input=trim(fgets($in,255));
56
57 switch ($input)
58 {
59 case "1":

consistency_check($in);
60 break;
61 // More cases
62 case "q": exit(0);
63 // beep for invalid input
64 default: echo chr(7);
65 }
66 }
67 ?>

Listing 1: PHP Menu

