
62

Linux continues to spread to more
and more ex-Windows desktops.
A major factor in the success of

Linux is the availability of easy-to-use
desktops and applications. This abun-
dance of software, however, means that
bona fide admins must spend more time
setting up the underlying tools that han-
dle mouse and keyboard controls, graph-
ics, and screen output for those applica-
tions.

The X server is the component that
underlies almost any graphical output on
Linux. The major exceptions to this are

the console and the SVGA-Lib [2] library,
a legacy library that supports direct
image output on Linux systems. The X
server itself provides primitive routines
for displaying windowing hierarchies. X
server also provides simple hardware
acceleration, as well as offering compo-
nents that support keyboard and mouse
handling.

If you do not feel at home with client/
server architectures, the X protocol
might confuse you at first, as the X11
server is often based on a small worksta-
tion underneath a user’s desk, whereas

Insider Tips: The X Window System

MISTER X11
the clients often reside on a fat machine
in the data center.

Client and Server Swap
Roles
In the topsy-turvy world of X, the server
is a program that interacts directly with
the user. It draws widgets (graphical ele-
ments) on the screen and accepts input.
The clients use a server rather than
drawing on the screen themselves. That
is, a client will not typically need direct
access to the graphics hardware, but will
simply ask the server to perform graphi-
cal functions. Typical X clients include
word processors, web browsers, or ter-
minal emulators.

If the client and server run on separate
machines, the X server is almost always
a desktop machine. This is also the case

with typical
Linux-based thin
clients, which
include a com-
plete X server.
It doesn’t really
make much differ-
ence where the
client is. Given a
fast enough net-
work connection,
the client can
reside in the data
center next door,
or on the other
side of the world.
This said, the cli-
ent often resides

on the same machine as the server.
A so-called kiosk system that runs just

a single application – an Internet cafe,
for instance, or a viewer for X ray images
– is a good example of a useful applica-
tion for an X server with a single client.

Two commands are all it takes to set
up a simple kiosk system. The adminis-
trator first needs to launch the server
and then the required client or clients. In
the following command, the option :3
stipulates that the server will run on the
fourth (start counting at zero) local dis-
play (and not the fourth monitor):

X :3 < /dev/null > U
/dev/null 2>&1 &
exec firefox --display :3 &

The xinit program facilitates this syntax
by taking care of launching the X server.

w
w

w
.sxc.h

u

Thanks to automatic hardware detection,

today’s admins rarely need to configure

the X window system manually. But if

you want to use X11’s excellent network-

ing capabilities and tuning options, you

will certainly benefit from some back-

ground knowledge.

BY MARC ANDRÉ SELIG

Admin Workshop: X WindowSYSADMIN

62 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

63

The following line launches the X server
and then Xterm, unless the .xinitrc
below the user’s home directory has a
different setting:

xinit -fn 9x13 -- :3 > U
/dev/null 2>&1 &

The /etc/X11/XF86Config-4 file is the
core of every X environment. Depending
on your X server variant and distribu-
tion, this file might be called xorg.conf or
something similar. The file has the con-
figuration for all devices that cooperate
with the X server.

As Linux has made amazing progress
with regard to hardware detection,
administrators don’t normally need to
modify the server configuration, and if
they do, the changes are minimal. Pro-
grams that automatically create this file
are xf86cfg, xf86config, or for Suse, Sax
or Sax 2.

The configuration file is not only
specific to the computer and graphics
adapter, but also to the monitor. Before
you change your monitor or graphics
adapter, you need to make sure you have
an alternative method of accessing the
computer, (via the network or the con-
sole), just in case the options are wrong
and the X server will not launch.

Window Managers
Left to its own devices, the X server is
not very user friendly, especially not if
you need to work with multiple pro-
grams at the same time. A structuring
component is needed to support more
convenient use of the workstation. The
window manager adds title bars to indi-
vidual windows, to help identify them
more easily, and a frame to allow users
to scale windows. Figure 1 shows TWM,
one of the oldest window managers.

TWM allows users to move and over-
lap windows, and even sorts them auto-
matically. It also implements a simple
menu that allows users to launch pro-
grams and iconize or scale windows.
Legacy window mangers such as TWM
or FVWM are lean and efficient, but still
convenient. Today’s thin clients or older

machines use them to save space and
resources.

Three lines are all you need to launch
an X session with TWM and Firefox:

X :3 < /dev/null > U
/dev/null 2>&1 &
twm -display :3 &
exec firefox --display :3 &

Today, most users prefer a full-fledged
desktop environment such as KDE or
Gnome. These all-encompassing frame-
works have tools, utilities, and extensive
libraries in addition to a window man-
ager. Libraries help to simplify GUI pro-
gramming, giving programs a uniform
look and feel, and optimizing communi-
cation between applications.

Modern desktop environments add a
session manager to the window man-
ager. The session manager restores the
previous session, launching the pro-
grams used last and putting the windows
where they belong. Both Gnome and
KDE have powerful session managers.

GUI-based Login
The X server handles screen input and
output, and the window manager facili-
tates the use of multiple windows. That
really only leaves one wish on the user’s
list, the ability to log on to the system in
a graphical window. There are not many

users today who
relish the thought
of launching a GUI
session using con-
sole commands.

A display man-
ager is a conve-
nient feature. It
calls an X server
and opens a dialog
box like the one
shown in Figure 2.
After authenticat-
ing the user, the
display manager
automatically
launches the con-
figured environ-
ment. If needed,

the X11 system’s networking capabilities
mean that the display manager doesn’t
even need to run on the same machine
as the X server. The display manager
launches like a simple client. The X
server can then use the XDMCP protocol
to talk to the display manager on
another machine.

The administrator can either assign a
computer as the display manager host,
or the X server can broadcast packets
across the LAN to automatically locate a
suitable display manager. The command
looks like this: X -broadcast. To launch
the display manager on a dedicated host,
you need to enter X -query host to launch
the X server.

All modern Linux distributions now
install a display manager and a matching
configuration along with X11. The easi-
est way of finding out where these com-
ponents are is to run locate [3], specify-
ing the name of the manager component
you are looking for. The legacy XDM and
the alternative KDE (KDM) (Figure 2)
and Gnome (GDM) components are
widespread.

Controlling Displays
Computers are not restricted to launch-
ing a single X server. With its multiple
virtual terminals, Linux can simultane-
ously support multiple servers. Special X
software applications can even run with-

Figure 1: Although the TWM window manager provides only minimal

functionality, it is easy to use and convenient.

SYSADMINAdmin Workshop: X Window

out a monitor and keyboard, which is
important for terminal servers. Because
the client and the server run indepen-
dently and don’t even need to reside on
the same machine, it is important for the
clients to know to which display to send
their output. The DISPLAY environmen-
tal variable takes care of specifying a
destination for the display data.

The variable contains an optional
hostname, a display number, and an
optional screen number: (Host):
Display(.Screen). The screen number is
not typically needed, except by Xin-
erama environments where a single X
server controls multiple displays. If the
hostname is not specified in DISPLAY,
clients automatically use the local
machine, using Unix sockets rather than
TCP ports to communicate (just like in
an X11 network connection.)

When a user logs in via a display man-
ager, the environmental variables are

automatically set. To launch an X
program automatically, you may
first need to set a variable. The
following syntax launches the
Firefox browser on the local
machine; the X server sends the
Firefox output to a computer
called sun14:

export DISPLAY=sun14:0
firefox &

If you are using X11 on a net-
work, there are two important

considerations you should keep in mind.
First, servers do not accept connections
from arbitrary clients – access by arbi-
trary clients would entail security risks.
Second, the data stream from the X ses-
sion is unencrypted by default. Attackers
could easily sniff the protocols and
hijack sessions.

Almost any modern X server applies
access controls by default. There are two
alternative systems for access controls:
Xhost allows access to dedicated com-
puters, which does not make it very
secure; Xauth uses cryptographic cook-
ies and thus supports very fine-grained
controls.

These protection schemes are an
important part of the X environment, as
X clients can influence the server and
other clients to a great extent using a
variety of protocols. For example, key-
board logging is very simple. Make sure
you only allow trusted programs to
access your own X server.

Cookie-based Access
Controls
The Xauth tool stores its cookies in a file
called .Xauthority below the user’s home
directory. Whenever the user launches a
client system, the client parses this
.Xauthority file and uses the appropriate
cookie to authenticate with the X server.
If you are running a session on another
machine, or if you are using different
credentials on your own machine, you
will need to import the cookie to your
.Xauthority first (see Listing 1.) xauth
nextract stores the cookie in a file, and
xauth nmerge imports the file to
.Xauthority.

The Xhost variant makes sense as
an option on stand-alone machines to
disable access controls completely. The
xhost + command allows any client on

any host to access the display. The xhost
- command reenables access controls for
the client.

Xauth only controls who is allowed to
access the X server – it does not protect
the data transmission at all. If you use
the mechanism in Listing 1 to launch cli-
ents on remote machines, you should be
aware of the danger of sniffing.

The popular SSH protocol helps tunnel
the X protocol through an encrypted
connection. The program provides
encryption, sets the environment vari-
ables to the appropriate values, and uses
Xauth to create an .Xauthority file on the
remote machine.

Tunneling X over SSH
To set up a tunnel, you need to set the
X11Forwarding variable in /etc/ssh/
sshd_config, and possibly in /etc/ssh/
ssh_config, to yes. Users can then set the
-X command line flag to create a tunnel
for X11 (Listing 2). SSH provides a
virtual X server on the remote machine
(typically :10); its clients use the display
on the local X server. ■

Figure 2: KDE’s KDM display manager has a menu to

allow users to select a desktop or shut down the

system.

01 #mas:~$ xauth nextract myxkey
:0

02 #mas:~$ chmod 640 myxkey

03 #mas:~$ su unsafe

04 #Password:

05 #unsafe:/home/mas$ firefox

06 #Xlib: connection to ":0.0"
refused by server

07 #Xlib: No protocol specified

08 #

09 #(firefox-bin:3086):
Gtk-WARNING **: cannot open
display: :0

10 #unsafe:/home/mas$ xauth
nmerge myxkey

11 #unsafe:/home/mas$ firefox

Listing 1: Importing
Session Cookies

[1] X.org: http:// www. x. org/

[2] SVGA-Lib: http:// www. svgalib. org

[3] Marc André Selig, “Admin Workshop:
Finding Files”: Linux Magazine 02/ 05,
p. 62.

INFO

01 #mas@ishi:~$ ssh -X kanat.
pair.com

02 #[...]

03 #mas@kanat:$ echo $DISPLAY

04 #localhost:10.0

05 #mas@kanat:$ firefox &

Listing 2: X11 Tunnel
over SSH

Marc André Selig
currently works as
a medical doctor in
the Augsburg
Regional hospital.
He also does con-
sultancy work for
Linux, Solaris, and BSD installa-
tions. Recent work includes search
engine technology and advanced
full-text linking for scientific articles.

T
H

E
 A

U
T

H
O

R

Admin Workshop: X WindowSYSADMIN

64 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

052-056_layout3 13.12.2004 20:43 Uhr Seite 55

