LINUXUSER

Using tr and dos2unix

Command Line: tr & dos2unix

THE TRANSLATOR

The trtool is a real wizard. This simple command lets you replace strings in text files. Whether you are replac-

ing letters or just removing whitespace, you will be amazed at tr's versatility. BY HEIKE JURZIK

he tr command replaces charac-

ters in text files. The command

reads the standard input and
sends the results to standard output. But
of course, you can use the familiar oper-
ators to redirect both streams. In fact, tr
really shines in combination with other
shell commands.

Simple Replacements

The tr command expects two strings as
arguments and replaces all the occur-
rences of the first argument in a text
with the second argument. This may
sound complicated, but let’s look at a
simple example. The following com-
mand replaces the “e“s in “Petronella”
with “a“s:

$ echo Petronella | tr 'e' 'a'2
Patronalla

Of course you can specify the strings you
want to replace within a file. tr '1' '2' <

ISSUE 53 APRIL{@#05

88

test.txt will replace any occurrences of
“1” in the file test.txt with “2” and send
the result to standard output. Note that
the characters within the arguments you
pass to the utility are handled as though
they were in separate fields. Each char-
acter in the first argument is replaced by
its counterpart in the second argument.
For example, tr ‘abc’ ‘xyz’ will replace
“a” with “x”, “b” with “y”, and “c” with
“z.. If the second string is shorter than
the first string, tr fills the gap with the
last character in the second string.

For example, you can enter tr 'abc' 'z’
< test.txt without fazing tr. The utility
simply replaces all occurrences of “a,”
“b,” and “c” with “z.” However, tr fails if
you try to replace, “a” with “ae.” The
fields are not the same length, and “d” is
just replaced with “a.” You might prefer
to use sed for these more complex
replacement tasks

Case Sensitive

tr can be extremely useful if you need to
swap lower- and uppercase letters. The
best approach is two define both argu-

UX-MAGAZINE.COM

ments as arrays of lower and capital
letters, for example:
tr 'a-z' 'A-7Z' < test.txt

If you prefer, you can simply reference
the cases as follows:

tr [:Tower:] [:upper:] 2
< test.txt

Everything but...
The tr command has a few parameters
that give you more granular control. For
example, you can use the -d option to
delete things, as in,

tr -d '0-9"' < test.txt
which sends all the numbers in a text to
the happy hunting grounds. A combina-
tion of this option and -c gives you an
even neater way of removing superflu-
ous content. Let’s assume you want to
remove everything apart from space
characters, uppercase characters, and
lowercase letters; you can use -c to tell tr
what not to delete:

tr -c -d 'A-Z a-z'

R

< test.txt

In combination with -s, tr allows you to
reduce the volume of a file - a useful
ability if you have, say, a logfile full of
whitespace. The -s option expects either
one or two arguments. For example, tr -s
"' < test.txt removes all the whitespace
from a file. But if you simply need to
remove double spaces, or tabs, and
insert a simple blank instead, you can
supply tr -s with two arguments:

tr -s [:blank:] ' ' < test.txt
In this case, tr will replace contiguous
blanks or tabs with simple blanks.

Migrating between Worlds
If you often have to exchange files
between Windows and Linux systems,
you will note that strange characters can
occur at ends of lines. For example, if
you try to open an ASCII created in Win-
dows with the Vim editor, you will
notice a weird looking bunch of "M
characters. The reason for this is quite
simple: the two systems use different
symbols for the end-of-line character.
Whereas Windows uses \r\n to denote a
line break, Linux leaves off the \r and
simply keeps the \n.

tr can help you exchange ASCII files
between these two systems. Calling

tr -d "\r' < wintext > Tinuxtext
will remove the extra \r at the end of
each line and convert the text file. The -d
flag tells tr to remove the unwanted
character. The < operator then tells the
command to parse wintext, and > sends
the “clean” results to an output file
called linuxtext.

Alternative Converters

The dos2unix and unix2dos tools are
also useful if you need to convert back

——l

4 I

Command Line: tr & dos2unix

and forth between Linux and Windows.
To convert a Windows text file to the
right format for Linux, simply enter:

$ dos2unix -n wintext 2
Tinuxtext

dos2unix: converting file 2
wintext to file Tinuxtext 2
in UNIX format ...

This command uses the -n option, which
allows you to specify both an input file
and a new output file. The manpage has
details on other useful tips and tricks.
The -k flag keeps the original timestamp,
and -o writes the changes directly to the
original file. unix2dos does the same
thing, but in the other direction:

unix2dos -n linuxtext wintext

On some systems, these utilities are sym-
bolic links to the fromdos and todos pro-
grams, respectively. These programs
have a slightly different syntax and dif-
ferent parameters. You should use the -b
option to create a backup of the original
file, even if you are not creating a new
file. And you might like to note the -a
flag, which removes all carriage returns
when stipulated with fromdos (and not
only those preceded by a line feed). If
you specify -a with the todos command,
it will convert any line feeds into CR-LF
pairs. The default behavior in this case
would be to convert only those line

GLOSSARY

Line break: The syntax for line breaks
on computers was based on the way
typewriters work. There is a control
character for the line feed, and another
for the carriage return. Different operat-
ing systems have different approaches
to handling line breaks. Whereas Linux
uses a simple line feed (\n = “new line”),
DOS/Windows adds a carriage return (\r
= “return”).

k

WWW.LINUXEMAGAZINE.COM

LINUXUSER

feeds that are not preceded by a carriage
return.

The two examples of dos2unix and
unix2dos shown previously could thus
look like the following:

cat wintext | fromdos -a 2
> Tinuxtext

cat Tinuxtext | todos -a 2
> wintext

Good Combinations

tr really shines when you use it in com-
bination with other shell commands. For
example, imagine you discover a large
number of files with blanks in their file-
names on your disk, and you want to
replace the blanks with underscores. A
for loop, the mv command, and tr will
help you change the underscores to
blanks:

$ for i in *; domv -v "$i" 2
“echo $i | tr ' ' '_'"; done
"file with blank" -> 2
"file_with_blank'

"file with blank 2' -> 2
"file_with_blank_2'

If we translate the preceding command
into plain English, the command would
be: for all the files in the current direc-
tory do the following: move the files
visibly for the user to files whose names
are the results of the tr replacement
operations.

Heike Jurzik studied
German, Computer
Science and English
at the University of
Cologne, Germany.
She discovered i
Linux in 1996 and has been fasci-
nated with the scope of the Linux
command line ever since. In her
leisure time you might find Heike
hanging out at Irish folk sessions or
visiting Ireland.

THE AUTHOR

ISSUE 53 APRIL 2005

89

