
51

titled “RAID Levels” for more on these
RAID alternatives.

RAID levels 0 and 1 are the most im-
portant levels for home use. Level 0 is
also known as striping, and gives you
best possible performance. Level 1 pro-
vides a high level of redundancy and is
known as mirroring. For users who can’t
decide whether they need more perfor-
mance or more redundancy, there is a
special RAID level for home use known
as RAID 1.5. However, this level is a
trade-off: at least four disks are needed
to combine the properties of Level 0 and
Level 1. RAID 1.5 combines Levels 0 and
1 using just two disks, and presents the
RAID disks separately to the application
layer (Figure 1).

Performance with Striping
Striping (RAID 0) involves stringing
disks together and addressing them
blockwise (in “stripes). When an appli-
cation needs to write data, the RAID
controller distributes the load over all
the disks.

From a technical point of view, the
controller simply dumps the data into

EASY RAIDER
RAID options for the Linux desktop

EASY RAIDER

w
w

w
.p

h
oto

ca
se.co

m

the hard disk cache and goes straight to
the next disk. By the time the controller
talks to the first disk again, the disk will
have had enough time to finish the task
and should have the results ready for the
controller to pick up. If you use two
disks, access times should theoretically
be twice as fast.

Of course, RAID 0 does not distribute
data character-wise; instead, it uses data
blocks with a certain striping granular-
ity. The probability of a failure increases
the more disks you add to the array.
Thus, striping is recommended for sys-
tems where speed is far more important
than redundancy.

Mirroring Safety
Mirroring (RAID 1) is exactly the oppo-
site to striping. It addresses the disks in
series and writes the data to each disk in
the array; in other words, RAID 1 mirrors
the data. However, storing identical cop-
ies of the data on each hard disk means
that the total capacity of the array is no
bigger than that of a single disk. If you
use two 200GByte disks, the net capacity
is just 200GBytes rather than 400. While

Linux offers several options for fulfilling the RAID promise of fast

hard disk access and data security. BY MARCUS NASAREK

In the past 15 years, hard disk capaci-
ties have grown by a factor of almost
a thousand. 15 years ago, a typical

hard disk had a capacity of between 300
and 500 Mbytes, and they were just as
expensive as today’s 300 to 500 Gbyte
disks. Because PCs with two or more
disks are now quite common, home
users can easily afford the data redun-
dancy and higher performance that
used to be the reserve of enterprise-
level servers. The technology that
makes this possible is known as RAID.

RAID – an Introduction
RAID [1] was designed some 20 years
ago by Berkeley post-graduate students
David Patterson, Garth Gibson, and
Randy Katz. At the time, RAID was the
answer to a difficult problem: if you
needed a lot of storage capacity, you had
to choose either a single, large disk that
was reliable but expensive or a lot of
small, fairly unreliable, inexpensive
disks.

One problem with small disks was
that the management effort involved in
replacing a single large disk with many
small disks was too high. RAID was a
scheme for addressing a multiple-disk
array as a single unit. The proposed
solution also addressed the risk of data
loss, in case a single disk in the array
failed. The paper they published was
titled “A Case for Redundant Array of
Inexpensive Disks (RAID).” When the
price of large disks stopped being an
issue some time later, the word Inexpen-
sive was replaced with Independent.

In the simplest RAID scenario, you can
group a number of disks to form a single
unit, and present that unit to the appli-
cation layer as a single, logical disk. This
is what geeks typically refer to as JBOD
(“Just a Bundle of Disks”). But RAID can
do far more. RAID serves as a manage-
ment layer between the filesystem and
the hardware that lets you exploit the
physical characteristics of the disk array.
Various RAID alternatives offer a range
of solutions for improving performance
or mitigating the risk of disk failure.

The various RAID alternatives are re-
ferred to as RAID Levels, although the
term level does not imply a hierarchy; in-
stead, the different RAID levels are really
completely independent designs. The
seven basic RAID levels are known as
RAID 0 through RAID 7. See the box

KNOW-HOWDesktop RAID

51ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M

the write access time is no different from
the time for a single disk, read access is
much quicker, as the controller can read
from both disks in parallel.

The big advantage that RAID 1 offers
is that, if one disk fails, the data is still
available on the other disk. However,
this only applies to physical defects: logi-
cal errors, such as inadvertent deleting,
modifying, or overwriting of files on the
filesystem, are mirrored to the other disk

in realtime. In other words, RAID 1 does
not protect you against human error or
software failures.

Combination: RAID 1.5
To leverage the benefits of RAID levels 0
and 1 at the same time, you need a PC
with at least four disks for a combined
RAID 10 approach (see the “RAID Level
Overview” box) – this is not an option
for most users. Some vendors are aware

that most desktop users don’t want to
use four disks and offer an elegant com-
promise that uses just two disks.

RAID 1.5, as this approach is known,
divides each of the two disks into two
areas. The controller combines one of
these areas on each of the disks to pro-
vide a RAID 1 array, while combining
the other two areas to provide a RAID 0
array. This approach is shown on the
right of Figure 1.

Besides the well-known RAID levels
0 and 1, there are a number of different
RAID designs. The original work
done by Patterson, Gibson, and Katz
covered levels 1 through
5. Levels 0 and 6 were
added later, as were
various proprietary
solutions. RAID levels 2
through 4, 6 and 7 are less
popular and have become
more or less insignificant.
Combinations of the other
designs have led to levels
known as Level 0+1, 10,
30, 15, 50, 51, 55, and
RAID-Z.

RAID 0 groups disks and
distributes the load evenly
over the disks. This greatly
improves access speeds.
The total capacity of the
array is equal to the sum
of the capacities of both
disks. The risk of failure is
quite high as this level of-
fers nothing in the line of
redundancy.

RAID 1 writes identical
data simultaneously to all
the disks in the array. The
total capacity of the array
is equal to the capacity of
a single disk. Read access
is typically quicker than
with a single disk, and
write access is about the
same speed.

RAID 2 was quite common for main-
frames in former times, but it is fairly
insignificant now. A RAID 2 array needs
at least 10 disks. Sophisticated error
checking lets users discover both hard
disk failures and write errors. Assuming
10 disks, the access time ratio for reading
and writing is 1 to 8 compared with a
single disk.

By adding the hard disk data bitwise, and
storing the results, you can restore the
data lost when a disk fails by reference to
the existing data and the results of the

addition. The result of the addition is
referred to as the parity. RAID 3 stores
the parity data for the array on a single
disk. As the parity disk is used much

more than the data disks,
it has a natural tendency to
fail first.

RAID 4 represents a minor
modification to RAID 3:
whereas RAID 3 uses byte
striping, RAID 4 processes
whole payload data blocks.
As a result, RAID 4 can han-
dle small files more effec-
tively, whereas RAID 3 only
comes to its own with con-
tiguous files. Just like RAID
3, RAID 4 uses a separate
parity disk.

RAID 5 is the cheapest ver-
sion of redundant data stor-
age. Assuming at least three
disks in the array, it gives
you 66 percent of the gross
capacity for payload data in
contrast to 50 percent with
RAID 1. The more disks you
add, the better the numbers
become. RAID 5 distributes
data and parity information
evenly over all the disks in
the array, meaning that the
disks are subject to about
the same levels of wear and
tear. On the downside, re-
building the RAID following
a disk failure takes much
longer than with RAID 1.

Depending on your application, you can
combine the basic RAID levels more or
less arbitrarily. RAID 10 implements a
RAID 0 array using two RAID 1 arrays.
RAID 1 provides redundancy for more
data security, while RAID 0 adds perfor-
mance. It you have at least six disks, a
combination of RAID 5 and 0 (RAID 50) is
even more efficient.

RAID Levels

RAID 0: More speed due to parallel
operations.

RAID 1: Redundancy through disk
mirroring.

RAID 2: Safety in numbers. RAID 3: Striping with parity.

RAID 4: A better form of RAID 3
for small files.

RAID 5: Redundancy and read
performance.

RAID Combinations.

Desktop RAIDKNOW-HOW

52 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

DFI and EPox were the first mother-
board manufacturers to introduce this
RAID variant, however, the vendors
failed to come up with the goods; both
boards just built RAID 1 arrays. The
performance benefits were drawn from
faster reading speeds. Finally, Intel came
up with the ICH6R I/ O controller for the
new Serial ATA disks to introduce “Intel
Matrix RAID”, which provides genuine
RAID 1.5 support.

Software vs. Hardware
The various RAID designs were origi-
nally implemented as software solutions.
As the computational effort of a soft-
ware-only approach proved to be too
much for CPUs at the time, it was not
long until the first RAID controller cards
were introduced to provide a more pow-
erful, hardware-based approach. This

kind of implementation is known as
hardware RAID.

The more powerful CPUs became, the
easier it was to implement software-only
RAID. Low-budget software RAID be-
came common on home machines run-
ning Linux. Software RAID arrays are
typically not as fast as their hardware-
based counterparts. The load on the CPU
is normally very noticeable in everyday
operations. Benefits such as parallel
access are difficult to exploit with soft-
ware-only drivers.

RAID became more popular with
home users when board vendors started
adding RAID controller chips to their
hardware. Today, most modern boards,
especially the ones with connectors for
fast S-ATA disks, have some kind of
RAID support. The integrated chips on
most motherboards only handle part of
the management, leaving the drivers the
lion’s share of the work. And getting this
to work is not always trivial.

Exploring RAID
Software-based RAID was introduced
to Linux a long time ago. Computers
now have enough power to handle the
additional load of managing an array of
disks almost transparently, and the per-
formance benefit from a motherboard-
based solution can be marginal, as it re-
lies to a great extent on software drivers.

For your first steps with RAID, it is
perfectly okay to install a software-based
variant. To do so, you will need root
privileges on the machine in question,
along with at least two free partitions
and the Mdadm tool ([2]). Make sure the

partitions are free
of data, as we will
be deleting the
filesystems on
these partitions in
the course of our
experiments.

You could even
use a USB stick for
your first RAID
experiments; you
will need to parti-
tion the stick with
a tool such as
Gparted, Qtparted,
or Cfdisk. The ex-
periment involves
the following
steps:

• Create at least two partitions of equal
size

• Use mdadm to combine the partitions
and create a RAID area

• Format the RAID device with a filesy-
tem

• Access the new RAID partition
• Use mdadm to monitor the RAID array
The following example uses a USB
device referred to as /dev/sdc and two
partitions referred to as /dev/sdc1 and
/dev/sdc2. To build a RAID 1 array, give
the following mdadm command:

mdadm --create --verbose U
/dev/md0 --level=1
-raid-devices=U
2 /dev/sdc1 /dev/sdc2

The --create option creates the RAID;
--verbose gives you more detailed
progress information; /dev/md0 is the
name of the resulting RAID device,
and --level=1 sets the level of redun-
dancy to RAID level 1. The last para-
meter passes in the number of RAID
partitions and their names.

Before you can use the newly created
RAID array, you first need to format it
(using ReiserFS in our example) and to
mount the resulting filesystem:

mkreiserfs /dev/md0
mkdir /media/RAID
mount /dev/md0 /media/RAID

Now you can use the /media/RAID
directory like any normal drive. How-
ever, in the background, your data will
be written to two partitions to provide
redundancy. The mdadm --detail /dev/
md0 command gives you information
on the RAID array status. Figure 2
shows the output from this command.

Conclusions
RAID offers a number of benefits for
home users. You achieve more data re-
dundancy and faster disk access with
RAID. The Mdadm tool will help you
implement any of the RAID levels intro-
duced in this article. ■

[1] RAID on Wikipedia:
http:// en. wikipedia. org/ wiki/ RAID

[2] Mdadm: http:// cgi. cse. unsw. edu. au/
~neilb/ mdadm

INFO

Figure 1: RAID Level 1.5 combines character-

istics of RAID 0 and RAID 1.

Figure 2: Mdadm gives you information on the RAID device status.

KNOW-HOWDesktop RAID

53ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M

