
64

It must have been sometime early in
the summer of 2005 when Jim Wei-
rich showed his friend Chris Nelson

the Ruby on Rails [1] video at a meeting
of the Cincinnati Java User Group. Chris
was impressed by the simple and quick
approach to developing web applications
and decided to introduce the same ap-
proach to his favorite programing lan-
guage, Java. A few months later, Chris
came up with the goods, introducing the
first version of Trails [2], an elegant web
framework for Java.

The purpose of the Trails project is to
“…make Java enterprise development
radically simpler by allowing developers
to focus on the domain model” while
other portions of the code are dynami-
cally generated [1]. Trails minimizes the
quantity of original coding and automat-
ically generates as much of the code as
possible. The name Trails is derived from
Rails and adds a T for Tapestry [3]. Tap-
estry is an open source framework for
building web applications in Java. Trails
also relies on concepts and components

from other trusted frameworks, such as
Apache Ant, AspectJ [4], Spring [5], and
the object relational mapper Hibernate.

In this article, I’ll put Trails to work on
a small example application: a tool that
manages information on videos.

Quickstart
To work with Trails, you need to install
Ant and the 20Mbyte Trails archive from
[2]; the archive includes all the other
frameworks you need to run Trails. You
should also have Tomcat 5.5 running as
your application server to avoid delays.
After setting ANT_HOME and unpacking
Trails in an appropriate directory, you
can give the ant install-apt command to
install the required Ant library for Trails
in the Ant-Lib directory.

Trails automatically generates the skel-
eton application (Rails refers to this as
the scaffolding) and populates it with
the required libraries and configuration
files. To do this, all you need to do is run
ant create-project against the Trails direc-
tory .

After entering the root directory and a
name for the new application (myvideos,
in this example), Trails creates a new di-
rectory along with the required subdirec-
tories and libraries, including a build.
xml file for creating and deploying the
new web application. The directory
structure for this new directory is as
 follows:
• Root directory/myvideos/: Main direc-

tory for the web application. This
 directory can be used as the starting
point for importing a project into an
IDE such as Eclipse.

• Root directory/myvideos/src: Source
code directory for the application. This
is where you implement your own
classes.

• Root directory/myvideos/context:
 Directory for the web application.

• Root directory/myvideos/context/
WEB-INF: This directory houses the
 required configuration files (web.xml,
hibernate.properties, and so on), along
with the Tapestry pages and HTML
fragments.

Developing web applications with the Trails framework

HAPPY TRAILS

Create Java applications in a fraction of the development time with

the free and powerful Trails framework.

BY ROMAN WARTALA

w
w

w
.sxc.h

u

Web apps with TrailsPROGRAMMING

64 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

65

• Root directory/myvideos/lib: A direc-
tory for all archives with various
frameworks (Hibernate, Tapestry,
Apache Commons, and so on).

You also need to specify the path to your
Tomcat installation in build.properties.

Domain-based Development
The starting point for any Trails web ap-
plication is one or more POJOs (Plain
Old Java Objects), which map to the do-
main objects in the application. This is
the first major and critical departure for
those familiar with Ruby on Rails: Trails
does not start with a database table, but
expects a simple Java class as its starting
point.

The class in Listing 1, which manages
the videos in our sample application, is
easy to create using a modern IDE such
as Eclipse. The programmer simply
needs to declare the class attributes id,
title, and year, and then use the getters
and setters generator (Figure 1) to create
the appropriate access methods.

To tell Hibernate which class to per-
sist, developers need to use Java 5 anno-
tations that comply with the new EJB-
3.0/ JSR 220 standards [6][7]. The @En-
tity annotation (Listing 1) specifies that
Hibernate should store the Movie class
in the database. A unique ID number is
still missing: the annotation @Id(generat

e=GeneratorType.AUTO) creates the ID
using the id attribute to do so.

To be able to distinguish between the
movies in the database, we also need an
equals, which is trivially implemented
using an EqualsBuilder from the apache.
commons.lang.builder framework. All
we need to do now is call the Ant target,
ant deploy; this sends the web applica-

tion to the address http://localhost:8080/
myvideos/.

CRUD
The welcome page of the video applica-
tion wishes users a friendly “Welcome.”
Clicking on List Movies takes you to the
first surprise, although you may be ex-
pecting this if you have worked with

01 package de.wartala.myvideos;

02

03 import java.util.HashSet;

04 import java.util.Set;

05

06 import javax.persistence.
Entity;

07 import javax.persistence.
GeneratorType;

08 import javax.persistence.Id;

09

10 import org.apache.commons.
lang.builder.EqualsBuilder;

11

12 @Entity

13 public class Movie {

14 private Integer id;

15 private String title;

16 private Integer year;

17

18 @Id(generate=GeneratorType
.AUTO)

19 public Integer getId() {

20 return this.id;

21 }

22

23 public void setId(Integer
id) {

24 this.id = id;

25 }

26

27 public String getTitle() {

28 return title;

29 }

30

31 public void setTitle(String
title) {

32 this.title = title;

33 }

34

35 public Integer getYear() {

36 return year;

37 }

38

39 public void setYear(Integer
year) {

40 this.year = year;

41 }

42

43 public boolean
equals(Object obj) {

44 return EqualsBuilder.
reflectionEquals(this, obj);

45 }

46

47 public String toString() {

48 return this.getTitle();

49 }

50 }

Listing 1: Movie (1)

Figure 1: You can use the getters and setters generator to create the appropriate access

methods.

PROGRAMMINGWeb apps with Trails

65ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M

Rails: even at this early stage of develop-
ment, users can easily create, search,
modify, or delete movie records. This de-
sign is known as CRUD (Create, Retrieve,
Update, Delete), and is one of the high-
lights of any Rails demonstration. And,
hey presto! Clicking on New Movie pops
up an input form for the first movie re-
cord. A simple Trails function, the so-
called Pluralizer, automatically generates
the plural Movies from the Movie POJO;
simply pass a class name in the singular
to the pluralizer to generate the plural.

We want our sample application to
manage actors as well as movies. To
do this, we need to implement a match-
ing domain object. The Actor class will
contain the attributes Name and Birth-

day (Listing 2).
Hibernate
wouldn’t be an
object relational
wrapper if it was
only capable of
mapping objects.
Of course it can
express relation-
ships between in-
dividual entities.
In the movie man-
agement applica-
tion, we need the
ability to assign
multiple actors to
a single movie, a
classical 1 to n

relationship. To express this within the
Movie class, you can use Java 5’s
Generics.

A hashset of Actor implements the 1 to
n relationship for the actors in the Movie
class (Listing 3, Line 25). Getters and
setters for this class attribute use JSR
220 annotations to express the required
relation (Listing 3, Lines 57 through 68).
ant redeploy applies the changes. Now, a
user who enters a movie can click Add
New to add actors.

Your Own Website
The visible websites thus far have been
generated by Trails and are fairly plain.
Trail annotations give developers the
ability to make simple changes, such as

modifying the input box order or the at-
tribute titles. For example, the following
annotation sets the position of the actor
birthday field in the form (Position 2),
the output format for the date, and the
label.

@PropertyDescriptor(index=2,U
format="dd.MM.yyyy",U
displayName="Birthday")
public Date getBirthday() {
 return birthday;
}

Of course, modifications of this type
should not reside within the class but
outside the source code. To do this, the
pages themselves have to be parame-
trized.

To support structural changes to an
underlying page, Trails uses the Tapestry
web framework for model view control-
lers. Tapestry supports simple implemen-
tation of website validation and interna-
tionalization. Just like Java Server Faces
(JSF), Tapestry distinguishes between
the content components on a page and
their representation. All the input ele-
ments shown in in Trails are Tapestry
or Trails components. If you want to
change the generated pages, you need to
concern yourself with the basic distribu-
tion of the individual elements in Tapes-
try. Trails generates default pages for
CRUD cases (.html extension) and page
models to match (.page extension). Both

01 package de.wartala.myvideos;

02

03 import java.util.Date;

04

05 import javax.persistence.
Entity;

06 import javax.persistence.
GeneratorType;

07 import javax.persistence.Id;

08

09 @Entity

10 public class Actor {

11 private Integer id;

12 private String name;

13 private Date birthday;

14

15 @Id(generate=GeneratorType

.AUTO)

16 public Integer getId() {

17 return id;

18 }

19

20 public void setId(Integer
id) {

21 this.id = id;

22 }

23

24 public String getName() {

25 return name;

26 }

27

28 public void setName(String
name) {

29 this.name = name;

30 }

31

32 public Date getBirthday()
{

33 return birthday;

34 }

35

36 public void
setBirthday(Date birthday) {

37 this.birthday =
birthday;

38 }

39

40 public String toString() {

41 return this.getName();

42 }

43 }

Listing 2: Actor

Figure 2: Trails lets you develop Java web applications like this

movie database minimal manual coding.

Web apps with TrailsPROGRAMMING

66 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

parts are controlled by the Tapestry ap-
plication servlet, which is integrated via
the web.xml file.

Localization
If you want to localize static page con-
tent, all you need to do is to change the
corresponding HTML pages. This is
where Java-style message bundles are
used. Message bundles are simple prop-
erties files with a simple parameter=
value structure. To display the Welcome
on the homepage of the application,
Home.html, depending on the web
browser locale, you need a messages_
[countrycode].properties file. For myvid-

eos in German, this would be messages_
de.properties in the /myvideos/context/
WEB-INF directory:

org.trails.welcome=U
Willkommen zu Trails

Don’t forget to replace the line <h1>
Welcome to Trails</h1> with the line
<h1><span key="org.trails.
welcome">Welcome to Trails
</h1> in Home.html to display a local-
ized form of the welcome message.

Unfortunately, this approach does not
work for the scaffolding: the homepage
of the sample application still displays

“List Movies”. In his blog at [8], the de-
veloper promised a solution for this in
the next version. Thus, it makes sense to
add country-specific details to the scaf-
folding in anticipation of the change.
And if you check out the CVS repository
for the Trails source code, you can see
that the packages are there.

An additional configuration file is
required by Trails, and this file is not
only for localization: /myvideos/context/
WEB-INF/applicationContext.xml inte-
grates the Spring framework with Trails.
It not only references the beans required
for Trails and Hibernate, it also decorates
the beans with various properties; and

01 package de.wartala.myvideos;

02

03 import java.util.HashSet;

04 import java.util.Set;

05

06 import javax.persistence.
CascadeType;

07 import javax.persistence.
Entity;

08 import javax.persistence.
GeneratorType;

09 import javax.persistence.Id;

10 import javax.persistence.
JoinColumn;

11 import javax.persistence.
OneToMany;

12

13 import org.apache.commons.
lang.builder.EqualsBuilder;

14 import org.hibernate.
validator.NotNull;

15 import org.trails.descriptor.
annotation.Collection;

16 import org.trails.descriptor.
annotation.PropertyDescriptor;

17 import org.trails.validation.
ValidateUniqueness;

18

19 @Entity

20 @ValidateUniqueness(property="
title")

21 public class Movie {

22 private Integer id;

23 private String title;

24 private Integer year;

25 private Set<Actor> actors
= new HashSet<Actor>();

26

27 @PropertyDescriptor(index=
0)

28 @Id(generate=GeneratorType
.AUTO)

29 public Integer getId() {

30 return this.id;

31 }

32

33 public void setId(Integer
id) {

34 this.id = id;

35 }

36

37 @PropertyDescriptor(index=
1)

38 @NotNull

39 public String getTitle() {

40 return title;

41 }

42

43 public void setTitle(String
title) {

44 this.title = title;

45 }

46

47 @PropertyDescriptor(index=
2)

48 public Integer getYear() {

49 return year;

50 }

51

52 public void setYear(Integer
year) {

53 this.year = year;

54 }

55

56 @PropertyDescriptor(index=
3)

57 @OneToMany(cascade=Cascade
Type.ALL)

58 @JoinColumn(name="movieId"
)

59 @Collection(child=true)

60 public Set<Actor>
getActors()

61 {

62 return actors;

63 }

64

65 public void
setActors(Set<Actor> actors)

66 {

67 this.actors = actors;

68 }

69

70 public boolean
equals(Object obj) {

71 return EqualsBuilder.
reflectionEquals(this, obj);

72 }

73

74 public String toString() {

75 return this.getTitle();

76 }

77 }

Listing 3: Movie (2)

PROGRAMMINGWeb apps with Trails

67ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M

this is also the right place to integrate
message bundles like the ones shown in
Listing 4.

The values of this parameter can be
referenced in different ways within the
Tapestry pages. As validation takes place
within the domain object, it is also pos-
sible to append the output to possible
field validators:

@NotNull(message="U
{error.emptyMessage}")
@Pattern(regex=U
"[A-z|\\s]+",message=U
"{error.letterOrSpace}")

To keep the configuration of Trails as
simple as possible, the in-memory ver-
sion of HSQL [9] is integrated as the
default database. This database is also
used by OpenOffice. For all other data-
bases, developers need to edit the
hibernate.properties file in the root
directory/myvideos/context/WEB-INF
directory. But be careful: Hibernate does
not support every database. Check out
[10] and [11] to find out which databases
are supported.

Ajax Support
Within the application scaffolding, a file
titled [applicationname].application con-
figures the Tapestry environment. The
file references the Ajax library, Tacos
[12]. One major advantage that Ajax of-
fers is partial rendering of page compo-
nents. This is useful for large pages with
many input and output components.
When a user is waiting for a web appli-
cation, it makes a big difference whether

the browser has to redraw 20 input fields
in a web form or just one field. Tacos
and thus Trails, has a simple approach
for how to handle this. Unfortunately,
the web developer not only needs to
modify the HTML page, but also to im-
plement a model class to do this in Tap-
estry. But again, help is on its way: the
developer promises a simpler approach
with the next release. If you can’t wait
for the next release, check out the Ajax
example at [2].

Pretty Good
Just like it is impossible to say Rails
without saying Ruby, it is impossible
to say Trails without saying Tapestry
if you intend to develop large-scale
projects. Rails owes most of its power
to the performance of the dynamic Ru-
by programming language. Java does
not support dynamic attributes and
methods (at this time of writing). In
fact Rails has many goodies that the
current Trails release lacks – email sup-
port, for example, although email
should be easy to implement using
Javamail. A convenient web services
interface is also missing, although the
Apache Webservice framework, Axis
[13], should take care of this. On the
other hand, Trails has the ability to
link to existing databases via Hibernate,
in contrast to Rails’ O/ R mapper
ActiveRecord.

Admittedly, there is still a lot of work
to do, but Trails version 0.8 is still a
couple of steps away from its 1.0 release.
If you take the trouble of checking out
the current Trails version from the CVS

repository, you will find references to
features in the next version of Trails.
Besides the I18N support referred to
earlier, the Trails framework can look
forward to a new package based on the
Acegi security framework for Spring
[14]. This security package will allow
developers to move security-based de-
clarations to the application context defi-
nition, in typical Spring style. And if
Chris Nelson then polishes up the docu-
mentation, and clever developers find a
way of integrating Java Server Faces in-
stead of Tapestry, Trails may become a
popular alternative for creating modern
J2EE web applications. ■

[1] “On the Right Track: Web Applications
with Ruby and Rails,”
by Armin Röhrl, Stefan Schmiedl,
Linux Magazine 1/ 05, p. 62.

[2] Trails at http:// trails. dev. java. net

[3] Jakarta Tapestry:
http:// jakarta. apache. org/ tapestry

[4] AspectJ:
http:// www. eclipse. org/ aspectj

[5] Spring Framework:
http:// www. springframework. org

[6] EJB 3.0 Annotation (JSR-220) at
http:// www. jcp. org/ aboutJava/
communityprocess/ edr/ jsr220

[7] Hibernate Annotations at
http:// www. hibernate. org/ hib_docs/
annotations/ reference/ en/ html

[8] Chris Nelson’s Weblog:
http:// jroller. com/ page/ ccnelson/
Weblog?catname=/ Trails

[9] HSQL: http:// hsqldb. org

[10] Databases officially supported
by Hibernate:
http:// www. hibernate. org/ 260. html

[11] Databases unofficially supported
by Hibernate:
http:// www. hibernate. org/ 80. html

[12] Tacos: http:// tacos. sourceforge. net

[13] Apache Axis:
http:// ws. apache. org/ axis

[14] Acegi Security Framework for
Spring: http:// acegisecurity. org

INFO

Ramon Wartala is a Software Engi-
neer with AOL Germany, where he
works in the Development & Archi-
tecture department. Whenever he
takes time out from the battle
against the Internet, Ramon likes to
spend time with his wife.T

H
E

 A
U

T
H

O
R

01 <!-- Message source for this context, loaded from localized
"messages_xx" files -->

02 <bean id="messageSource" class="org.springframework.context.
support.ResourceBundleMessageSource">

03 <property name="basename">

04 <value>messages</value>

05 </property>

06 </bean>

07

08 <bean id="trailsMessageSource" class="org.trails.i18n.DefaultTrails
ResourceBundleMessageSource">

09 <property name="messageSource"><ref local="messageSource"/></
property>

10 </bean>

Listing 4: Message Bundle

Web apps with TrailsPROGRAMMING

68 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

