
52

The open source MySQL database
system serves many of the
world’s leading enterprises, such

as Yahoo and Ticketmaster. It also pow-
ers a legion of high volume open source
websites like Wikipedia. Many enter-
prise organizations, however, have tradi-
tionally avoided MySQL in favor of fea-
ture-rich commercial database systems,
such as Oracle and DB2. Starting with
MySQL 5.0 [1], the MySQL developers
have begun introducing a range of enter-
prise features that will ultimately make
MySQL more competitive with commer-
cial database systems. This article exam-
ines some of the enterprise features that
have been making their way into
MySQL. Many of these features were in-

troduced in version 5.0, and some may
be enhanced in version 5.1, which is in
beta at this time of writing but may be
official by the time you read this article.
I used version 5.1.9-beta when testing
the listings in this article.

Three of the most appealing new fea-
tures in MySQL 5.x are stored proce-
dures, triggers, and views. These fea-
tures are hardly new for the industry.
 Oracle, for example, first introduced PL/
SQL [2], its implementation of a proce-
dural language for SQL, in 1991. Sybase,
PostgreSQL, and DB2 are among the
other database management systems
with a procedural language for SQL.
However, triggers, views, and stored
 procedures are nevertheless a welcome
addition to MySQL.

I should point out that some of these
MySQL enterprise features are in early
stages of development. Many of these
features are either incomplete or not per-
forming at optimum levels. Version 5.1
has addressed some of the issues related
to these new features, and the situation

will no doubt continue to improve with
later versions of MySQL.

The Ordering Scenario
Throughout this article I will refer to a
products table, an order_headers table,
an order_lines table, a stock_quantities
table and a customers table for the pur-
poses of illustration. Listing 1 shows the
SQL create table statements that create
the tables. When giving examples of
stored procedures, triggers, and views,
I will refer to the tables in the listing.

Stored Procedures
Before explaining what stored proce-
dures are, I should explain that when I
use the term stored procedure, I am usu-
ally referring to both stored procedures
and stored functions. A stored procedure
accepts multiple input and output pa-
rameters. A stored function also accepts
multiple input parameters but returns a
single value to the caller. This restriction
allows stored functions to be used
within SQL statements, which effectively

Larkin Cunningham just loves open

source software. Larkin currently

works with Oracle PL/ SQL and Java,

but he still finds time to dabble in all

things Linux. You can contact Larkin

at larkin.cunningham@gmail.com.T
H

E
 A

U
T

H
O

R

We’ll show you how some new features of MySQL 5 will improve

software design and boost application performance.

BY LARKIN CUNNINGHAM

THE SEQUEL
Stored procedures, triggers, and views in MySQL 5

THE SEQUEL

MySQL 5KNOW-HOW

52 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

53

allows you to extend the capability of
SQL.

Stored procedures are a powerful tool
to have in a developer’s arsenal. They
can be of great benefit in terms of perfor-
mance and application design. In terms
of performance, it is possible to reduce a
lot of network traffic by performing more
data processing within the confines of
the database. By reducing network traf-
fic, you can eliminate the latency associ-
ated with the application server commu-
nicating with the database server, partic-
ularly when they are on separate servers,
as is the case with most large scale ap-
plications.

With stored procedures you can take a
black box approach to application design
and development. A developer program-
ming in Java, PHP, Ruby, or any other
language with MySQL driver support
does not need to have extensive knowl-
edge of SQL or PL/ SQL. On a multi-
member development team, you can
have stored procedure developers con-
centrating on stored procedure develop-
ment and Java, PHP or Ruby developers
concentrating on their particular pro-
gramming language. As long as each
developer is aware of the inputs and
expected outputs, both developers can
work in parallel. This can be a way of
best leveraging the expertise of your de-
velopers, if the project is large enough

to warrant dedicated development
resources.

Portability is also aided by developing
more of your logic within the database.
It would be possible, for example, to de-
velop a batch application using C, a web
application using Ruby on Rails, and a
web service developed using Java, and
have them all using the same set of
stored procedures.

The approach of many to developing
applications that use a relational data-
base is to either embed all of the SQL
within their code or to embed all of the
SQL in stored procedures and only call
stored procedures from their code. Many
developers rely on object-relational map-
pers such as Hibernate [3] (for Java) and
ActiveRecord [4] (for Ruby on Rails),
where stored procedures are largely irrel-
evant. Deciding on your approach to
how to handle data processing in your
applications will depend on factors such
as performance and portability. If perfor-
mance is not a concern, then you would
be in a position to consider an object-re-
lational mapper that generates your SQL
on the fly. But if you care about perfor-
mance, and you have service level agree-
ments that demand a certain number of
transactions per second or a response
time in a certain number of milliseconds,
you will want to investigate the merits of
using stored procedures. If you operate a

heterogeneous environment with many
development platforms, then using
stored procedures may be a way for you
to develop your data processing logic
once in a central location. After all,
stored procedures do not care what pro-
gramming language makes the call.

Triggers
Triggers have many uses, including
house-keeping jobs like auditing and ar-
chival. They can have many other uses
too. One common scenario is where a
trigger is fired (more on trigger timing
and firing later) after a row is created,
for example an order line being added to
the order_lines table. A trigger could be
fired after the row is inserted to update
the stock quantity of the product in the
stock_quantities table.

Where archiving is required, you can
have an additional archive table for each
table where you want to store archive in-
formation. For example, the products
table may have an associated products_
archive table with all of the same col-
umns as the products table. To automati-
cally archive, you would create triggers
on the products table to insert a row into
the products_archive table after every
update or delete. You would not create a
trigger that is fired after an insert be-
cause to query the entire history for a
product, you would retrieve the union of

01 CREATE TABLE products (

02 id MEDIUMINT NOT
NULL AUTO_INCREMENT,

03 name CHAR(40) NOT
NULL,

04 cost DOUBLE(9,2)
UNSIGNED DEFAULT 0.0,

05 PRIMARY KEY (id)

06);

07

08 CREATE TABLE stock_quantities
(

09 id MEDIUMINT NOT
NULL AUTO_INCREMENT,

10 product_id MEDIUMINT NOT
NULL,

11 quantity MEDIUMINT NOT
NULL DEFAULT 0,

12 PRIMARY KEY (id)

13);

14

15 CREATE TABLE order_headers (

16 id MEDIUMINT NOT
NULL AUTO_INCREMENT,

17 customer_id MEDIUMINT NOT
NULL,

18 order_date DATETIME NOT
NULL,

19 order_status CHAR(1)
DEFAULT 'O',

20 PRIMARY KEY (id)

21);

22

23 CREATE TABLE order_lines (

24 id MEDIUMINT NOT
NULL AUTO_INCREMENT,

25 order_id MEDIUMINT NOT
NULL,

26 product_id MEDIUMINT NOT
NULL,

27 quantity MEDIUMINT NOT
NULL DEFAULT 0,

28 PRIMARY KEY (id)

29);

30

31 CREATE TABLE customers (

32 id MEDIUMINT
NOT NULL AUTO_INCREMENT,

33 name VARCHAR(70)
NOT NULL,

34 address VARCHAR(200)
NOT NULL,

35 phone VARCHAR(20)
NOT NULL,

36 email VARCHAR(40)
NOT NULL,

37 PRIMARY KEY (id)

38);

Listing 1: The database schema for these examples

KNOW-HOWMySQL 5

53ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

the row in the products table and the as-
sociated rows in the products_archive
table.

The approach is similar when auditing
is required. Instead of the approach of
having an associated archive table where
archiving is concerned, you might have
a single audit table. For the tables you
wanted to retain an audit trail of activity
for, you might have triggers fired after
any add, update, or delete. These trig-
gers would insert a row into the audit
table containing the nature of the action,
the table affected, the user performing
the action, the time stamp, and any key
data or non-key data deemed appropri-
ate. The approach of using triggers in the
database for auditing and not in your
application code can reduce the coding
burden on your developers and encour-
age consistency in an environment
where many applications access the
same database. There are many good
approaches to auditing that can be em-
ployed within your application code, so
each case will need to be examined in
context.

About Views
A view is a virtual table generated from
a stored query. The stored query is often
a multi-join query taking data from
many tables with certain conditions at-
tached. At a simpler, level it might be
just a subset of a large table. A trivial ex-
ample, again using the products table, is
to create a view called products_out_of_
stock, which joins the products table
with the stock_quantities table, where
the stock level is zero.

Views help you cut down on writing
SQL code for commonly accessed data
sets. Views also help efficiency because

the underlying
view query will be
cached and will
load faster than
several versions of
the same query
running from dif-
ferent locations.

About the
MySQL
Procedural
Language
MySQL 5 provides
a procedural lan-
guage you can use

to create your stored procedures and
triggers. Instead of going for a proce-
dural language based on C or Python,
the developers of MySQL created a pro-
cedural language compliant with the
ANSI SQL:2003 standard [5]. The ANSI
standard is used by the developers of
other relational database management
systems to varying degrees, so by follow-
ing the standard, the skillset acquired in
developing stored procedures and trig-
gers for MySQL is transferable to other
databases such as Oracle, DB2, and Post-
greSQL, which have similar procedural
language implementations.

Like the programming languages you
might be familiar with, such as PHP and
Java, MySQL’s procedural language has
the constructs you need to develop
useful code. This includes conditional
statements (IF-THEN-ELSE and CASE-
WHEN) and iterative statements
(REPEAT-UNTIL and WHILE-DO).

The length of this article does not
allow for an exhaustive reference of all
MySQL procedural language features. In-
stead, I will ex-
plain how MySQL
stored procedures
and triggers are
structured and
provide some sim-
ple examples that
offer a flavor of
what stored proce-
dures, triggers and
views really are. If
you are a sea-
soned program-
mer in any mod-
ern language,
MySQL’s proce-
dural language

will seem rather simplistic. MySQL’s pro-
cedural language is designed as a means
for providing input into SQL statements
and manipulating the results, not as a
language to compete with the likes of
PHP and Java.

The Structure of a Stored
Procedure
Stored procedures are written in a way
that allows them to be created by any
tool that executes SQL. Some of my list-
ings are displayed in MySQL Query
Browser [6], a very useful and free tool
from MySQL. They are written as SQL
scripts that basically tell MySQL what
the name of the stored procedure is and
what the contents are. If the stored pro-
cedure contains any errors, MySQL will
inform you when you attempt to create
the stored procedure.

Figure 1 shows a stored procedure that
accepts an integer value for an amount
to be added to stock. Because the default
delimiter in MySQL is a semi-colon, and
MySQL’s procedural language uses semi-
colons to terminate each program state-
ment, we need to instruct MySQL to
change the delimiter while we attempt to
create our procedure. The usual conven-
tion is to change the delimiter to double
dollar signs with the DELIMITER $$
statement (Line 1). The next statement
(Line 3) instructs MySQL to drop (de-
stroy) the existing stored procedure of
the same name if it exists. If it does not
exist, then this statement will be ignored
and the MySQL parser will move on.
Line 4 instructs MySQL to create a new
stored procedure with the name and pa-
rameters provided. All stored procedure
logic begins with the BEGIN statement

Figure 1: A simple stored procedure in MySQL Query Browser.

Figure 2: A procedure designed to return a result set to the caller.

MySQL 5KNOW-HOW

54 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

(Line 7). A number of declaration,
sequence, conditional, and iterative
statements can follow before the stored
procedure logic finishes with an END
statement (Line 26). Note how the END
statement is followed by our temporary
delimiter, the double dollars. This is
because we have now left the stored
procedure and have returned to normal
MySQL SQL parsing. At this point, we
switch back to the default semi-colon
delimiter (Line 28).

Variables, Parameters, and
Data Types
In Figure 1, I have declared one variable
max_addition (Line 8) and three param-
eters stock_addition, product_id and
new_stock (Lines 4 to 6). The IN and
OUT keywords tell MySQL that the
parameter can receive a value in, pass
a value back to the caller, or both (by
declaring a parameter to be IN OUT).
Parameters can be used like normal
variables, but only OUT parameters
should have their values changed in
the procedure.

Variables must be explicitly declared
and assigned a type as well as an op-
tional default value. The types you can
choose from are the standard SQL data
types for table columns. All of the data
types are scalar, that is, they can only
store a single discrete value. This rules
out data types such as arrays, which can
be frustrating for developers from lan-
guages like PHP and Java, but there are
workarounds, such as temporary tables
using a memory storage engine. Some of
the typical data types include CHAR and
VARCHAR (for characters and strings),
DATE, DATETIME, INT (including TI-
NYINT, SMALLINT, MEDIUMINT and
BIGINT), DECIMAL, FLOAT, DOUBLE,
and others. Large amounts of data can
be stored using other data types, such
as TEXT (up to 64 kilobytes) and BLOB
(binary large object-- in theory you can
store up to 4 Terabytes in a LONGBLOB).

Using SQL in Stored
Procedures
Unlike programming languages such as
PHP and Java, there are no drivers to

worry about and no special function or
method calls to execute your SQL. In-
stead, SQL statements can be run on the
fly and results read directly into vari-
ables. UPDATE and INSERT statements
can read values directly from your vari-
ables and parameters.

In Figure 1, an UPDATE statement
(Line 12) intermingles table names, col-
umn names, and parameters. In the fol-
lowing SELECT statement (Line 16), a
value is selected directly INTO an OUT
parameter. As I said earlier, MySQL’s
procedural language is ultimately a
means for inputting data to SQL and
processing the results.

In the SELECT statement (Line 16) in
Figure 1, a value was selected into an
OUT parameter. Assuming the id column
guarantees uniqueness, this is fine. But,
what if there were multiple values re-
turned by the SQL statement? You
should only select into a variable if you
are 100% certain of a single value being
returned. This will be the case where the
discriminator (the clauses after the
WHERE keyword) uses a unique key,

01 DELIMITER $$

02

03 DROP PROCEDURE IF EXISTS show_
orders_processed $$

04 CREATE PROCEDURE show_orders_
processed ()

05 BEGIN

06

07 DECLARE v_o_id MEDIUMINT;

08 DECLARE v_c_name
VARCHAR(70);

09 DECLARE v_c_phone
VARCHAR(20);

10 DECLARE v_o_date DATETIME;

11 DECLARE v_o_total
DOUBLE(9,2);

12 DECLARE not_found TINYINT;

13

14 /* Select all processed orders
*/

15 DECLARE order_summary_cur
CURSOR FOR

16 SELECT oh.id

17 , c.name

18 , c.phone

19 , oh.order_date

20 , SUM(p.cost *

ol.quantity) AS total_cost

21 FROM products p

22 , customers c

23 , order_headers oh

24 , order_lines ol

25 WHERE c.id = oh.customer_
id

26 AND oh.id = ol.order_id

27 AND ol.product_id = p.id

28 AND oh.order_status =
'P'

29 GROUP BY oh.id

30 , c.name

31 , c.phone

32 , oh.order_date;

33

34 DECLARE CONTINUE HANDLER FOR

35 NOT FOUND

36 SET not_found = 1;

37

38 SET not_found = 0;

39

40 OPEN order_summary_cur;

41

42 order_summary_loop:REPEAT

43

44 FETCH order_summary_cur

45 INTO v_o_id

46 , v_c_name

47 , v_c_phone

48 , v_o_date

49 , v_o_total;

50

51 IF not_found THEN

52 LEAVE order_summary_loop;

53 END IF;

54

55 SELECT CONCAT('Order ID: ',
v_o_id, ', Name: ', v_c_name,

56 ', Phone: ', v_
c_phone, ', Order Date: ', v_
o_date,

57 ', Order Total:
', v_o_total);

58

59 UNTIL not_found

60 END REPEAT order_summary_loop;

61

62 CLOSE order_summary_cur;

63

64 END $$

65

66 DELIMITER ;

Listing 2: A stored procedure using a cursor

KNOW-HOWMySQL 5

55ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

such as an id column using an auto_in-
crement, or where you select a function
value into the variable, such as with
SUM() or MAX(). I mentioned earlier
that variables were scalar and could only
hold single values. This rules out the
possibility of returning a list of values di-
rectly into a variable. This is where the
concept of cursors come to the rescue.

Using Cursors
A cursor is a pointer into a result set re-
turned by a SELECT query. Though used
primarily for SELECT queries that return
more than one row, you can still use a
cursor where only one row is returned.
Even if there are no rows returned, an
error will not be generated. However, if
we try to fetch a row either from a null
result set or if we try and fetch beyond
the last row in the result set, a MySQL
error will be thrown.

Listing 2 shows my preferred way of
handling cursors using REPEAT-UNTIL.
We begin the procedure by declaring
some standard variables, including one
called not_found. The not_found vari-
able is used in conjunction with a HAN-
DLER for the NOT FOUND condition.
That is, when a NOT FOUND condition
is encountered, such as with our cursor
going beyond its bounds, the value of
not_found will be set to 1 or TRUE.

Our cursor order_summary_cur is
nothing more than a value assigned to a
variable of that name until we actually
OPEN it. Once opened, we can begin
fetching from our cursor into variables
in the same order as the columns in our

cursor’s select
statement. To
fetch all of the
rows returned by
our select query,
we must use an it-
erative statement.
There are a num-
ber of ways to do
this, but my pre-
ferred way is the
REPEAT-UNTIL.
Though our RE-
PEAT statement
continues UNTIL
a specific condi-
tion is found to be
true (the not_
found variable, in
this case), we

have the option to LEAVE the iteration
before the UNTIL condition is reached.
To do so, we use a label to name the iter-
ation, order_summary_loop in this exam-
ple. This allows us to leave the iteration
before using any of the fetched vari-
ables, which, in the case of a fetch be-
yond the last row, will result in an error.

The SELECT CONCAT statement may
look odd, but it is how we display the
values returned by our cursor’s query.

Returning Result Sets to
Your Calling Code
If you are a hardened programmer using
something like PHP, Java, Python or
Ruby, you may wonder about the pur-
pose of a stored procedure like the one
in Listing 2, since it only displays the re-
sult to the console or in MySQL Query
Browser. It’s not much use if you would
like to manipulate the data in the result
set of that cursor.
It is, however,
possible to return
a result set to your
calling program
without the cursor
and handler code.

A plain SQL
statement can be
placed in a stored
procedure without
declaring a cursor
and without per-
forming a SELECT
into any variables.
It is written just as
you would write it

if you were executing your SQL in
MySQL Query Browser or phpMyAdmin
[7].

In the example in Listing 2, you can
simply abandon all statements between
the BEGIN and END other than the SQL
query. Figure 2 shows this rather sleek
stored procedure.

Notice how I have now changed the
stored procedure to receive a parameter
to select orders of a particular order sta-
tus. This stored procedure can now po-
tentially return the result set of the query
to a calling program, assuming your call-
ing programming language can support
retrieving these unbounded result sets.

It is possible to have multiple SQL
queries like in Figure 2. This may be use-
ful for related sets of data, however, I
prefer to stay clear of that approach and
have single queries returning single re-
sult sets.

Example of a Stored
Procedure Call
Many of you will have been waiting for
me to show some sample code for your
preferred programming language. I am
going to show a sample using PHP. The
approach is similar for other languages
with MySQL driver support, such as
Java, Ruby, and Python. My sample code
will call the stored procedure in Figure 2.

For MySQL 5, you must have the ob-
ject-oriented mysqli extension [8] loaded
or compiled into PHP. Figure 3 shows
the method calls using mysqli. Line 10
shows the stored procedure being called.
You will notice that it does not appear
to be different from a normal SQL call.
The while statement on Line 21 loops
through the rows in the result set

Figure 3: Sample PHP call to a stored procedure using mysqli.

Figure 4: The SQL to create a view.

MySQL 5KNOW-HOW

56 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

returned, just like a result set returned
from executing a normal SQL query.

Trigger Example
While stored procedures are initiated by
direct calls as their execution is required,
triggers, on the other hand, are initiated
by events that cause the triggers to be
fired. The events in question are inserts,
updates, and deletes.

Returning to the example tables in
Listing 1, we can imagine a scenario
where customer A orders product B. One
approach to recording this in our data-
base is to execute a stored procedure
that inserts an order header and an order
line and then updates the stock quantity
for the product. However, another ap-
proach is to say that any time an order
line is created, the corresponding stock
quantity for the product ordered will
always be reduced by the quantity or-
dered. We can consider this one of our

business rules.
Rather than hav-
ing to write the
update query
every time we
order a product,
we can create a
trigger that is exe-
cuted every time
an order line is in-
serted. This allows
us to have con-
crete business
rules enforced in
the database.

Listing 3 shows
a trigger that is

fired after an update occurs. The NEW
keyword refers to the new row values, as
they are after the update has completed.
The keyword OLD is also available and
will contain the values of the row as it
was before an update or delete. For ar-
chiving, for example, you might want to
insert the old row values into an archive
table for access to historical data. For
auditing, you might insert both old and
new values into an audit trail table.

You can also have a trigger fired before
an update, insert, or delete occurs. This
can be useful where you want to modify
the NEW row values, for example, for
validation purposes.

A View Example
In Listing 2, we had an attractive looking
piece of SQL that retrieved processed
order summaries. For many applications,
this may be a useful result set to have
around and re-use in several places
within your application. A view is a
mechanism for us to store and re-use
such useful queries and access them as
if they were just a regular table. The un-
derlying complexity of the query is hid-
den from us, and we can simply select
columns from this virtual table.

Views cannot accept parameters. If
you need your query to accept parame-
ters, you must create a stored procedure.
Figure 4 shows the query from Listing 3
created in the form of a view. Figure 5
shows the results of running a query
using the view. Notice how it looks like
a query against any regular table.

Next Steps
In this article I have attempted to intro-
duce you to some of the capabilities of

MySQL 5 stored procedures, triggers,
and views. These examples will give you
an idea of whether these new features
will be useful to your software develop-
ment efforts. Don’t forget that stored
procedures are all about SQL queries. If
you were writing inefficient SQL in your
program code, you will probably still be
writing inefficient SQL queries in your
stored procedures.

The feature set is completely new to
MySQL, but those of you who have
worked with stored procedures in other
databases, such as Oracle, DB2, and
PostgreSQL, will probably be more inter-
ested in the differences between
MySQL’s implementation and what you
are used to. MySQL’s procedural lan-
guage is not yet finished. Subsequent re-
leases of MySQL 5 should improve the
feature set considerably and address the
areas where MySQL’s implementation
falls short of its competitors.

The documentation [9] of the new fea-
ture set on the MySQL website is ade-
quate at best, though I am being kind
when I write that. However, books are
being published by MySQL Press and
other publishers that give a more de-
tailed overview of MySQL features. ■

[1] MySQL 5.0 Community Edition:
http:// www. mysql. com/ products/ data
base/ mysql/ community_edition. html

[2] Oracle’s PL/ SQL Technology Center:
http:// www. oracle. com/ technology/
tech/ pl_sql/ index. html

[3] Hibernate Object Relational Mapper
for Java and .NET:
http:// www. hibernate. org/

[4] ActiveRecord Object Relational
Mapper for Ruby: http:// rubyforge.
org/ projects/ activerecord/

[5] A Publication on ANSI SQL:2003 by
Eisenberg et al: http:// www. sigmod.
org/ sigmod/ record/ issues/ 0403/ E.
JimAndrew-standard. pdf

[6] MySQL Query Browser:
http:// www. mysql. com/ products/
tools/ query-browser/

[7] phpMyAdmin: http:// sourceforge. net/
projects/ phpmyadmin

[8] PHP’s mysqli extension:
http:// www. php. net/ mysqli

[9] MySQL’s rather sparse online docu-
mentation for stored procedures:
http:// dev. mysql. com/ doc/ refman/ 5. 0/
en/ stored-procedures. html

INFO

01 DELIMITER $$

02 CREATE TRIGGER order_lines_
ins_trg

03 AFTER UPDATE ON order_lines
FOR EACH ROW

04 BEGIN

05 UPDATE stock_quantities

06 SET quantity = quantity
- NEW.quantity

07 WHERE product_id = NEW.
product_id;

08 END $$

09 DELIMITER ;

Listing 3: A simple after
update trigger

Figure 5: Using a view just like a regular query.

KNOW-HOWMySQL 5

57ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

