
64

Today’s PCs have the processing
power to handle 3D images that
once required expensive Silicon

Graphics workstations. The world of 3D
programming is therefore open to almost
anyone. The OpenGL developers provide
a substantial C API, but thanks to Paul
Obermeier’s new Tcl3D extension [2],
getting started with OpenGL has become
even easier. Tcl3D offers access to
OpenGL commands in TCL.

Brian Paul developed his OpenGL wid-
get Togl shortly after OpenGL was first
released. However, Tcl developers had to
use C to write any functions they needed
for creating or lighting models. Tcl3D re-
moves this need, giving scripts access to
the lion’s share of the OpenGL API.
Tcl3D even supports extensions such as
OpenGL 2.0, the Nvidias CG Shader li-
brary, or SDL joystick support [4].

To install Tcl3D, you need the Tcl in-
terpreter, an OpenGL library, and possi-
bly CG and SDL. OpenGL is available as

a software only implementation, Mesa
[5], or with hardware acceleration to
match your graphics card. Depending on
the manufacturer, this can be an open
implementation in the X11 driver or a
proprietary variant, by ATI or Nvidia for
example.

Simple Installation
Tcl3D is easy to install. The homepage at
[2] has both source code and prebuilt bi-
naries for Linux. The current version is
0.3. In typical Tcl style, the extension
can reside at any location on the filesys-
tem, as long as the script adds this infor-
mation to the path. This said, it is sim-
pler to install the extension in one of the
default paths. You will find them in the
$auto_path Tcl variable.

Besides the Tcl3D library, it makes
sense to install the package with pro-
gramming examples. The package con-
tains about 100 programs with useful
suggestions for your own development

work. If you are new to OpenGL, the red-
book14 and NeHe directories are a good
place to start. The former contains the
examples from the legendary OpenGL
Programming Guide [6], dubbed the
Redbook because of its cover color,
while the latter has the examples from
the OpenGL Tutorial at [8].

No Shortage of Commands
OpenGL and the accompanying libraries
contain over 300 commands that cover a
full range functions for displaying 3D
models comprised of coordinates, lines,
triangles, and squares. The routines for
spheres or cubes simply create the skin.
If you need CAD style construction
drawings, a CAD system, or the Open
Cascade [9] CAD library are better suited
to the task.

The Bluebook [7] describes the
OpenGL API; the online version, or an
older edition should be fine for most
points. For the most part, Tcl3D uses the

w
w

w
.p

h
oto

ca
se.co

m

PICTURE SCRIPTS
Adding three-dimensional models to your TCL scripts with Tcl3D

PICTURE SCRIPTS

Tcl3D brings the world of 3D effects to TCL scripting. We’ll show you how to get started with building your

own 3D scripts. BY CARSTEN ZERBST

Tcl3DPROGRAMMING

64 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

65

same command names as Tcl, and again
for the most part, the way Tcl maps the
C functions is self-explanatory: the docu-
mentation has precise details if you need
them. The advantage of this approach is
that examples from C programs are eas-
ily ported to Tcl.

You will definitely need good exam-
ples to get started, if you want to see
more than an empty black window on
your screen. Three dimensions give you
more opporunity for errors. If you forget
the lighting, or pan the virtual camera in
the wrong direction, you see nothing.

Setting the Scene
The code in Listing 1 creates the Hello
World OpenGL example shown in Figure
1, a triangle and a square. Line 8 re-

quests the Tcl extension. If Tcl3D is not
installed in the normal path, Line 6
shows you how to modify the path. The
3D widget is then created by the togl
command in line 71. The -width and
-height options should be familiar from
other Tk widgets; the OpenGL-specific
options follow.

The -double option enables double
buffering; that is, Open-GL draws a new
image in the background first, and then
replaces the screen image with the new
one. This avoids flicker on drawing the
screen. The -createprop, -reshapeproc,
and -displayproc parameters pass in
three Tcl procedures to the widget,
which calls Createproc once on intializ-
ing, Reshapeproc on resizing, and Dis-
playproc whenever it draws the screen.

The first procedure in Lines 11 through
14 is called tclCreateFunc. It initializes
Open-GL; this is required just once per
program run. One design principle is
that settings apply until they need to be
changed. If you have set the color for a
shape to red, OpenGL will color every
following object red, no matter whether
the program inserts ten or ten thousand.
The background color set by glClearColor
in Line 13 thus applies to every screen.

Next in Lines 17 through 48, the script
defines the tclDisplayFunc. Tcl3D uses
this callback whenever it draws the
screen. After glClear has deleted the pre-
vious screen content in Line 19, the tri-
angle and square are now drawn. At the
same time, glLoadIdentity deletes the
previous starting coordinates and the gl-

01 #!/usr/bin/wish

02 # Simple Tcl3d example based
on

03 # OpenGL Tutorial from http://
nehe.gamedev.net

04

 05 # Extend search path if
needed:

06 #lappend auto_path /home/cz/
tcl3d0.3

07

 08 package require tcl3d 0.2

09

 10 # Sets a few initial values,
called when creating the
window

11 proc tclCreateFunc {toglwin} {

12 glShadeModel GL_SMOOTH
;# enable smooth color
transitions

13 glClearColor 0.1 0.7 1 0.5
;# define background color

14 }

15

 16 # create and display 3D model

17 proc tclDisplayFunc {toglwin}
{

18 # Delete color and depth
buffers

19 glClear [expr {$::GL_COLOR_
BUFFER_BIT | $::GL_DEPTH_
BUFFER_BIT}]

20

 21 # Set starting coordinates

22 glLoadIdentity

23 glTranslatef -1.5 0.0 -10.0
24
 25 # Draw a red triangle
26 glColor3f 1 1 0
27 glBegin GL_TRIANGLES
28 glVertex3f 0.0 1.0 0.0
29 glVertex3f -1.0 -1.0 0.0
30 glVertex3f 1.0 -1.0 0.0
31 glEnd
32
 33 # Square with different

colored corners
34 glTranslatef 3.0 0.0 0.0 ;#

restart
35 glBegin GL_QUADS
36 glColor3f 1.0 0.0 0.0 ;#

First corner red
37 glVertex3f -1.0 1.0 0.0
38 glColor3f 0.0 1.0 0.0 ;#

Second corner green
39 glVertex3f 1.0 1.0 0.0
40 glColor3f 0.0 0.0 1.0 ;#

Third corner blue
41 glVertex3f 1.0 -1.0 0.0
42 glColor3f 1.0 1.0 1.0 ;#

Fourth corner white
43 glVertex3f -1.0 -1.0 0.0
44 glEnd
45
 46 # Display new model
47 $toglwin swapbuffers
48 }
49
 50 # Calculate view for model,
51 # whenever window size changes

52 proc tclReshapeFunc {toglwin
b h} {

53 # prevent divide by zero

54 set h [expr {$h<1 ? 1 : $h}]

55

 56 # Set Viewport

57 glViewport 0 0 $b $h

58 glMatrixMode GL_PROJECTION

59 glLoadIdentity

60

 61 # Calculate and enable
perspective

62 set angle 46

63 set perspective [expr
{double($b)/double($h)}]

64 set von 0.1

65 set bis 100.0

66 gluPerspective $angle
$perspective $from $to

67 glMatrixMode GL_MODELVIEW

68 }

69

 70 # Draw window

71 togl .toglwin -width 640
-height 480 \

72 -double true -createproc
tclCreateFunc \

73 -reshapeproc tclReshapeFunc
\

74 -displayproc tclDisplayFunc

75 pack .toglwin -expand 1 -fill
both

Listing 1: Hello World in OpenGL

PROGRAMMINGTcl3D

65ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

Translatef rotation, and sets new starting
coordinates. The coordinate system is
shown in Figure 2: the x and y axes de-
scribe the screen; the z axis adds depth.

Line 26 calls glColor3f to set the object
color to red: the color values are taken
from the RGB model, with values be-
tween 0 and 1 (additive colors red,
green, and blue.) The block in Lines 27
through 31 then calls glBegin GL_TRIAN-
GLES to define the first triangle with
three vertexes through to glEnd. The
script can specify multiple triangles
between glBegin and glEnd.

Most surfaces can be depicted really
well just using triangles, but OpenGL
has other graphic primitives, such as
points, lines, or squares. As an example,
let’s take a look at the square in Lines 34
through 44. After calling glTranslatef to
define the starting coordinates, another
coordinate list occurs between glBegin
and glEnd. To draw a square, you need
to make sure that all four points are on a
single plane. If not, OpenGL will not dis-

play the square correctly, and gaps will
occur in the geometry.

Objects with Color
Gradients
The square description also contains a
color definition for each corner, causing
OpenGL to draw a color gradient in the
square. Now that the shape is com-
pletely defined, swapbuffers copies the
image rendered in the background to the
window, and the first OpenGL shape ap-
pears (see Figure 1).

The tclReshapeFunc function (Lines 52
through 68) is called when the widget is
resized. It defines the model view. The
OpenGL Utility library (Glu) provides a
gluPerspective function to handle this.
The view is known as a viewport (see
Figure 2). The viewer is located at the
starting coordinates and shows a section
of the 3D model defined by the height
and width of the window. The angle of
46° defined in Line 62 corresponds to
the field of sight of the human eye.

The viewport only shows those parts
of the model specified as being in view
in Lines 64 and 65. In contrast to a pho-
tograph, the sections in front of or be-
hind this sector are not out of focus but
completely invisible.

Listing 1 has two major flaws. For one
thing, the third dimension is invisible, as
the viewer can only see the model from
a single perspective. The second prob-
lem with the code in Listing 1 is the per-
formance. The tclDisplayFunc procedure
redefines the 3D model whenever the
screen is redrawn. This may be fine for
smaller models, but the sequence will be

Figure 1: The script code in Listing 1 creates a simple 3D model com-

prising a single colored triangle and a multicolored square.

Figure 2: A question of views: without the right viewport, the viewer in OpenGL sees nothing.

The viewport emulates a camera in the virtual scene but only shows objects between the two

planes.

�����

������

�����

����������

�

�

�
��������

Figure 3: The sphere in Listing 2 comprises 2600 elements. Despite

this, it can be moved smoothly using the mouse and keyboard.

01 # Set starting values and
create display list.

02 # Called when creating the
window

03 proc tclCreateFunc {toglwin} {

04 # Black background

05 glClearColor 0.0 0.0 0.0 0.0

06

 07 # Some tuning

08 glClearDepth 1.0

09 glEnable GL_DEPTH_TEST

10 glShadeModel GL_FLAT

11 glDepthFunc GL_LEQUAL

12 glHint GL_PERSPECTIVE_
CORRECTION_HINT GL_NICEST

13

 14 sphere 100 ;# Create display
list once only

15 }

Listing 2a: Display List

Tcl3DPROGRAMMING

66 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

too slow, even with as few as 100 trian-
gles.

Motion
A second example that draws a sphere
from about 2600 triangles (Figure 3)
shows how to handle this issue. Redraw-
ing the sphere would take far too much
time. To avoid the need to do so, the
tclCreateFunc procedure (Listing 2a) cre-
ates a display list. The list contains pre-
built geometries that the program can
call as often as needed any time later.
Using a display list improves the perfor-
mance, as creating a shape can take 10
to 1000 times longer than displaying one,
depending on the complexity.

The sphere (Listing 2b) first creates a
new display list and then fills it with tri-

angles, in a way similar to the first ex-
ample. Depending on the latitude, the
triangles change color; the script uses
the hls2rgb script to do this [12].

Transformation
Instead of inserting the sphere at a spe-
cific position, the Tcl3D functions gl-
Translatef and gl-Rotat-ef set new start-
ing coordinates and a new orientation
(Lines 6 through 9). If the position and
orientation variables change, the sphere
moves to a different position. Instead of
changing the position of the viewer, the
script actually moves the whole model.

To interpret user interaction, the script
uses Tk’s binding technique in combina-
tion with callback functions. The call-
backs react to mouse and keyboard

events. Pressing the arrow keys moves
the sphere. The scroll wheel changes
the distance; holding down the left
mouse button while turning the wheel
rotates the sphere. The callbacks also
call .toglwin postredisplay to force a re-
draw after completing the action.

Users interested in high resolution
hard copy of their Tcl3D results can say
thank you to Ian Gay for his tclgl2ps [10]
project. The program creates genuine,
scalable Postscript documents, thus giv-
ing users the ability to create high qual-
ity 3D hard copies.

Texturing
3D models are mainly made up of trian-
gles, which are easily and quickly cre-
ated. However, it would take millions of

01 proc sphere {radius} {

02 set edge 10

03 set ::displayliste
[glGenLists 1]

04 glNewList $::displayliste
GL_COMPILE

05 for {set l 0} {$l <= 360}
{incr l 5} {

06 for {set b -90 } {$b <= 90}
{incr b 5} {

07 # Position in arc

08 set lr [expr {$l/180.0 *
$::PI}]

09 set br [expr {$b/180.0 *
$::PI}]

10 # Set color for next
element

11 set hue [expr
{sin($br/3.0)}]

12 eval glColor3f [hls2rgb
$hue 1 1]

13

 14 # Insert triangle

15 glBegin GL_TRIANGLES

16 glVertex3f \

17 [expr {$radius*cos($l
r)*cos($br)}]\

18 [expr {$radius*sin($l
r)*cos($br)}]\

19 [expr
{$radius*sin($br)}]

20 glVertex3f \

21 [expr {$radius*cos($l
r)*cos($br)}]\

22 [expr {$radius*sin($l
r)*cos($br) +$edge}] \

23 [expr
{$radius*sin($br)}]

24 glVertex3f \

25 [expr {$radius*cos($l
r)*cos($br)}]\

26 [expr {$radius*sin($l
r)*cos($br)}]\

27 [expr
{$radius*sin($br) +$edge}]

28 glEnd

29 }

30 }

31 glEndList

32 }

Listing 2b: Create Sphere Model

Figure 4: Instead of using a script to create every single element in a

3D model, OpenGL programs can load and display prebuilt 3D models.

Figure 5a: The process starts with a simple network of triangles that

together to form a sphere-shaped model.

PROGRAMMINGTcl3D

67ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

triangles to emulate details such as
eyes or clothing. Complex images can
be applied to a 3D model using a process
known as texturing. Recent graphics
adapters typically have a huge memory
for textures. Lighting applies the finish-
ing touches. The standard lighting pro-
vided by OpenGL is about as attractive
as neon light – but more pleasing light
sources are available.

Even simple models that use just a few
triangles can look quite realistic if you
apply a suitable texture to them (Figures

5a through 5c). To allow OpenGL to
mount the bitmaps to reflect the geome-
try, you need to provide specific instruc-
tions on what to put where.

This is where worlds collide: the three
dimensional X-Y-Z coordinate system of
the triangle, and the two dimensional S-
T coordinate system used by the texture.
The glTexCoord2f command tells
OpenGL which part of the texture (S, T)
to apply to the next defined geometrical
coordinate (X, Y, Z).

Listing 3 shows the important parts
of the source code. The main program
inserts the tclCreateFunc function as
-createproc into the OpenGL widget. The
library then calls this function to create
the content of the widget. The function
loads the textures and creates the geom-
etry.

Bitmaps for textures are typically
available on your hard disk, and realistic
renderings will use photos of the re-
quired surfaces. Check out Mayang [13]
for textures, or [14] if you are looking for
woodgrains. Any bitmap will serve as a
texture, however, the edge length should
be a power of two, for example, 256 by
512. To avoid ugly looking seams, you
can apply a Gimp filter to create a seam-
less pattern (Filters | Map | Make seam-
less).

Workaround
Unfortunately, there isn’t a function to
load bitmaps directly from disk in
OpenGL; in fact, the process takes three
steps. First, the script retrieves the bit-
maps in typical Tk style using image
create photo -file filename. Tk programs

typically use this to load bitmaps for
buttons. The if-catch construction in
Lines 9 through 11 issues an error mes-
sage if the script fails to load the file.

Next, the bitmap is moved from Tk to
OpenGL. Tcl3D has a function for doing
this; it loads the Tk images into an
OpenGL vector. First, tcl3dVector creates
a vector in Line 17; its length is defined
by the length and width of the image
multiplied by the number of channels.
Normal images have a channel each for
red, green, and blue; some have an addi-
tional channel for transparency. In Line
18, the tcl3dPhoto2Vector function copies
the image content to the vector. There
are now two versions of the image, the
OpenGL vector and the Tk image. Line
19 deletes the latter to save space.

Obviously, OpenGL will distort the bit-
map in most cases to make it match the

Figure 5b: A wrapper makes the object look like a sphere and hides

any invisible edges.

Figure 5c: An appropriate texture converts the surface of the object

into a realistic looking stone.

Figure 5d: The surface structure of a stone

does not depend on its shape. A two dimen-

sional photo of the surface is fine as a tex-

ture.

01 proc tclDisplayFunc {toglwin}
{

02 # Delete screen and depth
buffer

03 glClear [expr {$::GL_COLOR_
BUFFER_BIT | $::GL_DEPTH_
BUFFER_BIT}]

04

 05 # Set starting coordinates

06 glLoadIdentity

07 glTranslatef $::Posx $::Posy
$::Posz

08 glRotatef $::Rotx 1.0 0.0 0.0

09 glRotatef $::Roty 0.0 1.0 0.0

10 glRotatef $::Rotz 0.0 0.0 1.0

11

 12 # Call display list

13 glCallList $::displayliste

14

 15 $toglwin swapbuffers

16 }

Listing 2c: Display Sphere
Model

Tcl3DPROGRAMMING

68 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

geometry. To do so, it interpolates space
between dots; the glTexParameteri com-
mand provides simple linear interpola-
tion in Lines 22 and 23. Then glBindTex-
ture creates a texture object from the ex-
isting vector (Line 28).

Textures and More
Besides the bitmap, texture objects in-
clude additional information such as the
height, width, and type. In Line 32
glTexImage2D maps this data to the
image from the OpenGL vector created
previously. Texture objects typically re-
side in the memory on the graphics card,
and this means that the card can apply
the data to the geometry without need-
ing to access the main memory. The
code in Line 35 deletes the OpenGL vec-
tor containing the image, which only
makes sense.

In contrast to Java, OpenGL does not
have a garbage collector to remove the
variables it creates. Thus, it makes sense
to explicitly delete any variables created
for intermediate steps, such as the vec-
tor. Otherwise, they will tend to clutter
up the main or graphics memory and
slow down the display.

The next thing the program does is to
create the geometry and decorate it with
the texture (Lines 38 through 42). To cre-
ate a clean area of texture, OpenGL
needs the triangle nodes, the normal
vector at the nodes, and the position
within the bitmap.

The normal vector is a vector of length
1. It points up vertically from the sur-
face, and thus defines the position of the
surface. OpenGL needs this value to cal-
culate lighting and highlights. In our ex-
ample, the renderSphere function in Line

46 creates a sphere from multiple stripes
of triangles (Figure 5a), where the num-
ber of stripes is variable. The full version
is at the Linux Magazine website; Listing
3 just provides the excerpt with texture
processing.

The angle theta2 represents the alti-
tude, and theta3 is the longitude (Lines
49 through 51). First, the script calcu-
lates the normal vector. This is totally
simple for a sphere. Then glTexCoord2f
(Line 55) specifies which point of the
texture is applied to which point of the
geometry. The sphere requires a projec-
tion to paste the flat texture onto the
curved surface. The example uses a sim-
ple cylindrical projection.

Stony Pattern
The results are shown in Figure 5c. The
square frame from the bitmap (Figure

01 # This is called once
02 proc tclCreateFunc {toglwin} {
03 # a few settings
04 glEnable GL_TEXTURE_2D
05 glEnable GL_DEPTH_TEST
06 glPolygonMode GL_FRONT_AND_

BACK GL_FILL
07
 08 # Load image in Tcl
09 if [catch {image create photo

-file "worked_stone_8180226.
JPG"} phImg] {

10 error "Error loading file:
$phImg"

11 }
12
 13 # Create OpenGL Vector with

bitmap from Tcl image
14 set w [image width $phImg]
15 set h [image height $phImg]
16 set n [tcl3dPhotoChans $phImg]
17 set pTextureImage [tcl3dVector

GLubyte [expr {$w * $h * $n}]]
18 tcl3dPhoto2Vector $phImg

$pTextureImage
19 image delete $phImg ;# Bild

aus Tcl löschen
20
 21 # Specify interpolation
22 glTexParameteri GL_TEXTURE_2D

GL_TEXTURE_MIN_FILTER $::GL_
LINEAR

23 glTexParameteri GL_TEXTURE_2D
GL_TEXTURE_MAG_FILTER $::GL_

LINEAR
24

 25 # Create texture from OpenGL
vector with bitmap

26 set ::g_textureID [tcl3dVector
GLuint 1]

27 glGenTextures 1 $::g_textureID

28 glBindTexture GL_TEXTURE_2D
[$::g_textureID get 0]

29

 30 if {$n == 3} {set type $::GL_
RGB

31 } else { set type $::GL_RGBA}

32 glTexImage2D GL_TEXTURE_2D 0
$n $w $h 0 $type GL_UNSIGNED_
BYTE $pTextureImage

33

 34 # Delete OpenGL vector with
bitmap

35 $pTextureImage delete

36

 37 # Create display list...

38 set ::g_sphereDList
[glGenLists 1]

39 glNewList $::g_sphereDList GL_
COMPILE

40 # ...and fill with geometry
and texture

41 renderSphere 0.0 0.0 0.0 1.5
$::resolution

42 glEndList

43 }

44

 45 # Create sphere from triangles
with texture

46 proc renderSphere {r p} {

47 [...]

48 # Normalenvektor berechnen

49 set normalX [expr
{cos($theta2) * cos($theta3)}]

50 set normalY [expr
{sin($theta2)}]

51 set normalZ [expr
{cos($theta2) * sin($theta3)}]

52 glNormal3f $normalX $normalY
$normalZ

53

 54 # Simple cylindrical
projection of texture

55 glTexCoord2f [expr {-1.0 *
($j/double($p))}] \

56 [expr { 2.0 * ($i+1)/
double($p)}]

57

 58 # Calculate coordinate
positions

59 set posX [expr {$r *
$normalX}]

60 set posY [expr {$r *
$normalY}]

61 set posZ [expr {$r *
$normalZ}]

62 glVertex3f $posX $posY $posZ

63 [...]

64 }

Listing 3: Textures

Tcl3DPROGRAMMING

70 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

5d) has been contorted to form triangles
at the poles. Finally, glVertex3f specifies
the coordinates of a frame point on the
sphere to complete the definition of a
dot.

The remaining source code then de-
fines triangles for these coordinates and
then creates the surface of the sphere.
Figure 5a only shows the edges, for dem-
onstration purposes. The texture (Figure
5d) converts this very simple geometry
into a fairly realistic image (Figure 5c).

Lights out, Spot on
Thus far, we have used the standard
lighting with the cold aesthetics of neon
light. Just like everything else in
OpenGL, however, lighting is a feature
you can define down to the last detail.
Environmental or spot lights with colors
and positions, and the surface material,
all influence the color of an object. For

materials, you can define both the nor-
mal body color, and the color of the
highlights.

For example, Listing 4 gives you ex-
cerpts from the source code defining a
complete image. Users can choose the
color of the sphere, the lighting, and the
highlights. The script looks familiar with
its tclCreateFunc (Line 13), tclReshape-
Func (curtailed), and tclDisplayFunc
(Line 37) functions. tclCreateFunc in
Line 22 uses glEnable to enable user-de-
finable lighting, and then positions the
first light, GL_LIGHT0 (Lines 23 through
25). Then, glEnable enables the material
(Lines 28 through 29).

The light and color are defined by the
color procedure (Line 47). First, tclCre-
ateFunc calls the color function; the GUI
will use this function whenever the col-
ors change. The color procedure sets the
color of the light source GL_LIGHT0

using the glLightfv command in Line 49.
The color2liste helper (in Line 65) con-
verts the color from the hex representa-
tion #fe0000 to RGB 1.0, 0.0, 0.0.

Besides the lighting, the color of the
shape plays an important role. The
glMaterial group of functions handles
this. For our sample sphere, GL_SHINI-
NESS and GL_SPECULAR set the color,
and intensity of the highlights (Lines 52
through 53). The highlights are those
parts of the light that a body reflects di-
rectly from a light source back to the
viewer. The size and brightness depend
on the surface; for example a polished
billiard ball has smaller and brighter
highlights than a rough wooden sphere.

Most bodies do not emit light them-
selves, but you can use OpenGL to de-
pict light bulbs and neon lights. Color
GL_EMISSION (Line 65) lets you do this,
by specifying the light emitted by the

01 #!/usr/bin/wish
02 package require tcl3d
03
 04 # Startcolorn
05 set ambient #00d0d0
06 set specular #ffff00
07 set material #eeeeee
08 set emission #000000
09 set shinines 25.0
10
 11 # Set position of light
12 # Called once during

initialization
13 proc tclCreateFunc {toglwin} {
14 # Background color
15 glClearColor 0.0 0.0 0.0 0.0
16
 17 #glPolygonMode GL_FRONT_AND_

BACK GL_LINE
18 glShadeModel GL_SMOOTH
19 glEnable GL_DEPTH_TEST
20
 21 # Eigenes Licht definieren
22 glEnable GL_LIGHTING
23 glEnable GL_LIGHT0
24 set light_position {1.0 1.0

1.0 0.0}
25 glLightfv GL_LIGHT0 GL_

POSITION $light_position
26
 27 # Enable material-specific

light

28 glColorMaterial GL_FRONT GL_
DIFFUSE

29 glEnable GL_COLOR_MATERIAL

30

 31 # initialize colors

32 color

33 }

34

 35 # Draw new sphere.

36 # Called for each display.

37 proc tclDisplayFunc {toglwin}
{

38 # Delete previous geometry

39 glClear [expr {$::GL_COLOR_
BUFFER_BIT | $::GL_DEPTH_
BUFFER_BIT}]

40 # Create sphere

41 glutSolidSphere 1.0 32 32

42 glFlush

43 }

44

 45 # Set material color

46 # Call for each color change,

47 proc color {args} {

48 # Light color

49 glLightfv GL_LIGHT0 GL_
AMBIENT [color2liste $::
ambient]

50

 51 # Material color for
highlights

52 glMaterialf GL_FRONT GL_
SHININESS $::shinines

53 glMaterialfv GL_FRONT GL_
SPECULAR [color2liste $::
specular]

54

 55 # Color as light source

56 glMaterialfv GL_FRONT GL_
EMISSION [color2liste $::
emission]

57

 58 # Surface color

59 glColor4fv [color2liste $::
material]

60

 61 .fr.toglwin postredisplay

62 }

63

 64 # Convert HEX color to RGB

65 proc color2liste {color} {

66 set retval {}

67 set liste [winfo rgb .
$color]

68 foreach c $liste {

69 lappend retval [expr {$c /
65535.0}]

70 }

71 return $retval

72 }

Listing 4: Light and Color

Tcl3DPROGRAMMING

72 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

body. Finally, glColor4fv (Line 59) de-
fines a color, which applies to the next
defined geometry.

tclDisplayFunc creates a new sphere
whenever it is called. To do so, it draws
on a GLUT (GL Utilities) library func-
tion: glutSolidSphere (Line 41) creates a
sphere of triangles with the specified ra-
dius and resolution. As this will always
follow the color procedure, it adopts the
material and surface color defined there.
The remaining window dressing is com-
prised of normal Tk with buttons to
change the colors.

Third Party Textures
The methods we have discussed thus far
use a script to create, move, and light ge-
ometries, and cover them with textures.
However, the procedure for moving an
image of a whole vehicle or a house can
be fairly complex . Tools such as Ayam
[15], or Blender [11] facilitate the pro-
cess. They provide a CAD system spe-
cially for surface models, and even sup-
port modifying and tailoring of textures.

Thanks to Nate Robins GLM library,
OpenGL scripts can import finished

models, if they are
provided in Object
Wavefront format
(.obj). This library
is part of the
Tcl3D package, al-
though it is avail-
able for other pro-
gramming lan-
guages. The
Wright Brothers’
legendary Kitty
Hawk plane serves
as an example in
Figure 6. The
VRML model from
[16] can be con-
verted into an .obj
file using Blender
[11] (a download is available from [3]).
Listing 5 reads the obj file and puts the
model on your screen.

On initializing, tclCreateFunc (in
Line 3) loads the model, drawing on the
glmReadObj function in Line 20.
glmFacetNormals and glmVertexNormals
(Lines 21 and 22) calculate the normal

vectors required by OpenGL. The model
is then ready for displaying; In Line 26,
tclDisplayFunc draws the model by call-
ing glmDraw in Line 37, using the
SMOOTH and MATERIAL flags. All done!
Instead of individually defining thou-
sands of triangles, the script has loaded
a complete model in just a few steps. ■

[1] OpenGL: http:// www. opengl. org

[2] Tcl3D: http:// www. tcl3d. org

[3] Togl: http:// togl. sourceforge. net

[4] SDL: http:// www. libsdl. org

[5] Mesa: http:// www. mesa3d. org

[6] Mason Woo, Jackie Neider und Tom
Davis, “OpenGL Programming
Guide” (Redbook): Addison-Wesley

[7] Dave Shreiner, “OpenGL Reference
Manual” (Bluebook): Addison-Wesley
sowie http:// www. rush3d. com/
reference/ opengl-bluebook-1. 0

[8] Nehe: http:// nehe. gamedev. net

[9] Open Cascade:
http:// www. opencascade. org

[10] Tclgl2ps: http:// www. sfu. ca/ ~gay/
tclgl2ps. zip

[11] Blender: http:// www. blender. org

[12] Downloads for this article: http:// ftp.
linux-magazin. de/ pub/ listings/
magazin/ 2006/ 07/ 3D-Skripting

[13] Free textures from Mayang: http://
www. mayang. com/ textures/

[14] Woodgrains:
http:// www. woodworking. org/ WC/
woodsampler. html

[15] Ayam: http:// ayam. sourceforge. net

[16] 3D model of the Kitty Hawk: http://
www. ocnus. com/ models/ Vehicles/

INFO 01 # Set start values and
generate display list.

02 # Called when creating the
window.

03 proc tclCreateFunc {toglwin} {

04 # Black background

05 glClearColor 0.1 0.7 1 0.5

06

 07 # Some tuning

08 glClearDepth 1.0

09 glEnable GL_DEPTH_TEST

10 glShadeModel GL_SMOOTH

11 glDepthFunc GL_LEQUAL

12 glHint GL_PERSPECTIVE_
CORRECTION_HINT GL_NICEST

13

 14 glEnable GL_DEPTH_TEST

15 glEnable GL_LIGHTING

16 glEnable GL_LIGHT0

17

 18 # Read file

19 set filename "untitled.obj"

20 set ::objId [glmReadOBJ
$fileName]

21 glmFacetNormals $::objId

22 glmVertexNormals $::objId

90.0

23 }

24

 25 # Display 3D model

26 proc tclDisplayFunc { toglwin
} {

27 # Delete screen and depth
buffer

28 glClear [expr $::GL_COLOR_
BUFFER_BIT | $::GL_DEPTH_
BUFFER_BIT]

29

 30 # Set starting position

31 glLoadIdentity

32 glTranslatef $::Posx $::
Posy $::Posz

33 glRotatef $::Rotx 1.0 0.0
0.0

34 glRotatef $::Roty 0.0 1.0
0.0

35 glRotatef $::Rotz 0.0 0.0
1.0

36

 37 glmDraw $::objId [expr $::
GLM_SMOOTH | $::GLM_MATERIAL]

38 $toglwin swapbuffers

39 }

Listing 5: Loading a Wavefront Model

Figure 6: This model of a biplane comes from a CAD program. A

Tcl3D script imports the object file and uses it in OpenGL.

Tcl3DPROGRAMMING

74 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

