
68

Google is more than just a search
engine. This vast and rapidly ex-
panding company is also a major

center for software development. Be-
sides programs such as Google Desktop
and Google Earth, the company also re-
leases other web-based products once a
quarter. While Google Mail is enjoying
the limelight, new applications such as
Google Reader, Google Calendar, or
Google Spreadsheet have attracted very
little attention. These lesser known ap-
plications share the look and feel of their
more popular counterparts, and they use
AJAX for quick and easy client access.

Although many suspected Google had
its own framework running under the
hood, there was no way of knowing for
sure until recently. But Google finally
confirmed the suspicions at the Java One
Fair in May of this year by putting the
Google Web Toolkit (GWT) up for grabs
as a free download [1].

What’s in the Box?
AJAX [2], the asynchronous processing
of HTTP requests and responses, along

with some help from Javascript and
XML, are currently the buzzwords
among web developers. AJAX toolkits
for programming languages such as Perl
[3], Ruby, and PHP are becoming ever-
more popular. But Google has ventured
into new territory with their Java-based
framework. Java simply serves as a gen-
erator and test language, as AJAX uses
Javascript client-side.

But why Java? The main reason is sim-
ple bug hunting. GWT gives developers
the ability to run and test an AJAX appli-
cation in what’s known as hosted mode.
This means running a Java version of
the application within a standard Java
Virtual Machine. Programmers can use
their preferred development environ-
ments and debuggers.

After the application is finished, it is
compiled into Javascript. The HTML and
Javascript code created by this process
can be installed on a web server, where
it runs in web mode. The component ar-
chitecture of the GWT framework com-
prises a special web browser, a widget
class library for AJAX-based interfaces,

and Javascript implementations of Java
standard classes such as java.lang, and
java.util. Besides this, the framework
modifies the Javascript code to suit pop-
ular web browsers like Mozilla, Firefox,
Internet Explorer, Opera, and Safari.

Getting Started
The 22 Mbyte gwt-linux-1.0.21.tar.gz
package includes documentation and
five sample applications, ranging from a
trivial Hello program, through a widget
overview, to a small email application

Creating dynamic web applications with the Google Web Toolkit

GOOGLE TOOLS
The Google Web Toolkit lets you develop complex web applications

in Java and automatically converts them to AJAX apps.

BY RAMON WARTALA

w
w

w
.foto

lia
.d

e, T
im

oth
y

 L
a
rg

e
01 CREATE TABLE myaddress."names"

02 (

03 id serial NOT NULL,

04 firstname varchar(50) NOT
NULL,

05 lastname varchar(100) NOT
NULL,

06 email varchar(128) NOT NULL,

07 CONSTRAINT id PRIMARY KEY
(id)

08)

09 WITHOUT OIDS;

10 ALTER TABLE myaddress."names"
OWNER TO myaddress;

Listing 1: Postgresql Table
for MyAddress

Google Web ToolkitPROGRAMMING

68 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

69

(see Figure 1). The applications can be
launched using the shell scripts in the
application directories.

The sample GWT application we will
be discussing in this article uses an ex-
isting server to query a simple address
database. To keep things simple, the
server will be based on Ruby On Rails,
as the implementation only takes a few
lines of code – this has no effect on the
client, of course. The finished version
can be downloaded at [9]. The My-
Address service developed specially for
this purpose is a simple database (see
Listing 1) that manages first names, fam-
ily names, and email addresses.

The data exchange relies on the JSON
format (JavaScript Object Notation) [4].
In contrast to XML, JSON does not use
tagging, and thus generates less over-
head. To retrieve the address for a family
name from the database using Rails, and
to package the address in the JSON for-
mat, all we need is the 10 lines in Listing
2. Line 6 reads the family name from an
HTTP request and finds the matching
address in the database in Line 7. Line 8
converts the address to JSON format.

The ruby script\server start command
calls the MyAddress service. The internal
Ruby On Rails developer server gets the
service to listen on port 3000 on local-
host. You could just as easily query the
server by entering http://localhost:3000/
name/ in a browser. Another advantage
of Ruby On Rails is that you can manage
the database via a generated input form
(Figure 2). After entering a few records,
query them in your browser at the fol-
lowing URL: http://localhost:3000/name/
find_names_to_json?lastname=Name.

Now let’s start
developing the
GWT project that
uses the web ser-
vice. We can type
projectCreator on
the command line
to create the proj-
ect frame for an
application. The
-out specifies the
target directory;

-eclipse specifies that we will be creating
the project for the Eclipse IDE:

projectCreator U
-eclipse Myaddress_GWT -out U
myaddress_gwt

The applicationCreator command line
tool creates the required classes, scripts,
and configuration files:

applicationCreator U
-eclipse MyAddress_GWT -out U
myaddress_gwt U
de.wartala.client.MyAddress

After making sure you have all the re-
quired files, you can import the GWT
project into Eclipse by selecting Import |
Existing Projects into Workspace in the
Package Manager (Figure 3). Within the
project structure, I will be using the XML
configuration of a module as the entry
point. applicationCreator has already
created a module configuration with an
entry point, based on the required target
package (Listing 3). It references the
Java class, which the application will
call when launched in hosted mode, and
is also found in the HTML file, which
implements the framework for the client
GUI. The most important lines here are
the references to the module class and to
the GWT Framework’s Javascript library:

<meta name='gwt:module' U
content='de.wartala.MyAddress'>
<script language="javascript" U
src="gwt.js"></script>

When the application is launched, it first
calls the onModuleLoad() method,
which generates the widgets provided by
the GUI library, before instantiating
more classes: MyAddressRequester in our
example. The application then sends re-
quests to the MyAddress service, re-

Figure 1: This email program is one of the sample applications intended to demonstrate the

capabilities of the Google Web Toolkit.

01 class NameController <
ApplicationController

02 scaffold :name

03 def find_names_to_json

04 # make sure not to send
html but text/plain

05 @headers["Content-Type"] =
"text/plain; charset=utf-8"

06 search_name =
@params['lastname']

07 names = Name.find(:all, :
conditions => ['lastname like
?', search_name])

08 render_text names.to_json

09 end

10 end

Listing 2: NameController

Figure 2: The web service in our example can provide records directly

to the browser.

PROGRAMMINGGoogle Web Toolkit

69ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

ceives the responses, and fills the GUI
elements with them.

The initializeMainForm() method gen-
erates the interface, which is comprised
of a search button, an input box, and
aFlexTable. initializeMainForm() then
sets attributes and events, just like an
AWT or the Swing interface.

Our example only requires a single
ClickEvent to trigger a click on Search.
The response for this event is imple-
mented by the inner class, SearchButton-
ClickListener.

An onClick() event triggers the AJAX
part of the application and sends an

asynchronous HTTP
request to the ser-
vice, which passes
the result to a
matching response
handler. JSONRe-
sponseTextHandler,
another inner class,
implements the
onCompletion()
method, which is
called when the
asynchronous HTTP
request returns any
results.

As the service re-
turns a JSON object,
we first need to de-
code the object and break it down into
its component parts. JSONParser.parse
(responseText) handles the task of
decoding the object, and the method
displayJSONObject() handles the latter
step, delegating the chore to the method
updateAddressTable(). The method
updateAddressTable() renders the results
as a table, entering the values from the
JSON response in the corresponding
rows and columns.

Now for the MyAddress-shell.sh com-
mand line script. Figure 4 shows the
front-end in hosted mode. After entering

a family name, the data returned by the
service appears in the table.

Hunting Bugs
The advantage of hosted mode becomes
apparent if a program error occurs; it is
easier to find a bug in the Java code than
in the compiled Javascript. Setting the
-eclipse parameter when calling project-
Creator creates a file with a .launch
suffix besides the project-specific data.
Thanks to the parameters configured
here, the application can be executed in
Eclipse and debugged with a little help
from breakpoints and other techniques
(Figure 5).

[1] Google Web Toolkit:
http:// code. google. com/ webtoolkit

[2] AJAX: http:// en. wikipedia. org/ wiki/
Ajax_%28programming%29

[3] AJAX and Perl: http:// www. linux-mag-
azine. com/ issue/ 62/ Perl_AJAX. pdf

[4] JSON: http:// www. json. org

[5] GWT Widget Gallery:
http:// code. google. com/ webtoolkit/
documentation/ com. google. gwt. doc.
DeveloperGuide. UserInterface.
WidgetGallery. html

[6] GWT Widget Library:
http:// gwt-widget. sourceforge. net

[7] gwtPowered.org:
http:// gwtpowered. org

[8] GWT group on Google Groups:
http:// groups. google. com/ group/
Google-Web-Toolkit

[9] Sample server and client from this ar-
ticle: http:// www. linux-magazine. com/
Magazine/ Downloads/ 74/ gwt

INFO

Figure 4: Ajax applications can be debugged using a special web

browser in hosted mode.

01 import com.google.gwt.core.client.EntryPoint;

02 import com.google.gwt.user.client.ui.RootPanel;

03 import com.google.gwt.user.client.ui.TabPanel;

04

05 /**

06 * Entry point classes define <code>onModuleLoad()</code>.

07 */

08 public class MyAddress implements EntryPoint {

09

10 /**

11 * This is the entry point method.

12 */

13 public void onModuleLoad() {

14 TabPanel tp = new TabPanel();

15 MyAddressRequester myJson = new MyAddressRequester();

16 tp.add(myJson.initializeMainForm() ,"Lastname");

17 tp.selectTab(0);

18 RootPanel.get().add(tp);

19 }

20 }

Listing 3: Client Entry Point Class

Figure 3: The Google Web Toolkit can option-

ally create Eclipse project files, giving pro-

grammers the ability to import them into

the IDE as a project.

Google Web ToolkitPROGRAMMING

70 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

In addition to supporting Eclipse-
based debugging, the GWT framework
also supports unit tests of its own
classes. The GWTTestCase class is the
entry point that implements JUnit inte-
gration. The junitCreator command line
tool generates all the required files,
including the test class proper:

junitCreator.cmd -junit U
eclipse/plugins/org.junit_3.8.1U
/junit.jar -eclipse U
myaddress_gwt2 -out U
myaddress_gwt2 U
de.wartala.myaddress.test.U
MyAddressTest

The files created here are used for test
purposes in both hosted and web mode,
both in Eclipse and on the command
line. If the application runs without an
error, you can run the Project-compile.sh
script to create a Javascript version of
the Java application.

The script performs the tasks of copy-
ing and generating all required files to
and in a www subfolder of the working

directory when you call junitCreator.
cmd.

GWT and More
Of course, the Google Web Toolkit has
more potential than a simple example
can demonstrate. It has a total of 20 wid-
gets; the documentation gives you an
overview in the Widget Gallery [5]. Be-
sides HTML equivalents of checkboxes

and radio buttons, Layout Managers
(Panels) are particularly useful. Vertical-
Panel can help you aligning buttons
vertically, for example.

GWT also gives developers the ability
to design their own widgets; surf to [6]
and [7] for examples and howtos. The
framework has already attracted a lively
community that uses Google Groups [8]
to discuss questions on the subject. ■

Figure 5: Eclipse Debug Mode speeds up bug hunting.

PROGRAMMINGGoogle Web Toolkit

71ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

ADVERTISEMENT

