
87

Where graphical file managers
like Konqueror and Nautilus
use mouse clicks and conve-

nient features such as drag and drop,
you could use some simple commands
in the shell. This article introduces the
mkdir, rmdir, cd, touch, cp, mv, and rm
commands, and demonstrates highly ef-
ficient data management at the console.

Creating and Deleting
directories
The mkdir (“make directory”) command
lets you create a new folder. The follow-
ing command:

mkdir folder1

creates a directory named folder1 in your
current directory. The access privileges
for the new directory are defined by the

umask (see the “Umask” box on page
88). To assign different permissions, you
can use the -m flag, with an octal num-
ber to define the permissions you want
(Listing 1).

The command also understands rela-
tive and absolute path values. For exam-
ple, to create a folder below the music
directory, you don’t actually need to
change to the directory. Instead, you just
specify the path:

mkdir music/Metallica

If the superordinate directory does not
exist, mkdir will protest:

mkdir: cannot create directory U
 `music/Metallica': No such U
 file or directory

In this case, you need to set the -p option
to create hierarchies of folders at a single
step. Instead of entering the following
list of commands:

mkdir music
mkdir music/Metallica
mkdir music/Metallica/Load

you could achieve the same effect with
the -p parameter and a single command:

mkdir -p music/Metallica/Load

• Mkdir – Lets you create directories

• rmdir – Lets you remove directories

• Cd – Helps you navigate between
folders

• cp – Copies data

• mv – Moves things

• Rm – Gives users an elegant approach
to getting rid of files and directories

Commands

F
ra

n
z
 P

flu
eg

l, Foto
lia

Data management in the Shell

WELL ORGANIZED

Do some serious spring cleaning and reorganize your data. The right

commands can help you to keep on top of your file and directory

management. BY HEIKE JURZIK

LINUXUSERCommand Line: File Management

87ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M

The command for deleting a directory is
rmdir (“remove directory”). If the folder
is not completely empty, rmdir will re-
fuse to cooperate:

$ rmdir folder1
rmdir: "folder1/": U
 Directory not empty

In this case, you can either remove the
folder content first, or just call the rm
command (see the “Clean Slate” sec-
tion), which has an option for enforced
deleting. rmdir also supports the -p pa-
rameter, and assuming that all the fold-
ers are empty, the following command:

rmdir -p music/Metallica/Load

will remove all three directories from
your disk in one fell swoop.

The Right Touch
The touch command is often used to
create new, empty files. The command:

touch cluck

creates an empty file called cluck in the
current directory, assuming the file does
not already exist. The command also
evaluates the umask to automatically set
permissions.

If the file exists, touch modifies the
timestamp for the file, and sets the last
access and last changed times for the file
to the current time. This makes a lot of
sense in combination with make, for ex-
ample. However, this command only
works if one or multiple source files
have changed.

To talk make into running, even if the
sources have not changed, you can run
touch against the source code files to
modify the timestamps, as in touch
*.tex, for example.

Clever Navigation
The cd (“change directory”) command
lets users navigate folders. You can spec-
ify either an absolute path, or a relative
path:

cd /var/log
cd ../../var/log

The command has a couple of practical
shortcuts. Typing cd without any other
parameters takes you to your home di-
rectory.

cd evaluates the HOME environmental
variable to discover the path to the
home directory:

$ echo $HOME
/home/huhn

Bash also uses the OLDPWD environ-
mental variable to store the name of the
last folder you visited, and cd $OLDPWD
takes you back to this folder.

Typing cd $OLDPWD a second time
beams you back to your previous direc-
tory; the shell only stores these two di-
rectories, so that you just jump back and
forth each time you give the cd $OLD-
PWD command. You can save some
typing by replacing $OLDPWD with a
minus sign (Figure 1).

Copying Files and
Directories
The cp (“copy”) program duplicates
files. To use the command, you need to
specify the source and the target:

cp file1 file2

The copy this command creates has the
current timestamp, and belongs to the
current user by default. Again, permis-
sions are controlled by umask. If you
need to keep as many properties of the
original file as possible, you can set the

01 $ mkdir folder1

02 $ mkdir -m 777 folder2

03 $ ls -l

04 drwxr-xr-x 2 huhn huhn 4096
 2006-12-28 14:07 folder1/

05 drwxrwxrwx 2 huhn huhn 4096
 2006-12-28 14:08 folder2/

Listing 1: -m flag

The umask defines the permissions the
filesystem assigns to new files and
directories. You can type umask at the
prompt to output the current value for
this variable. The output will be a four-
figure octal number that defines the per-
missions to be denied.

In our example, 0022 means that text
files, which are typically created in 0666
mode (read and write access for all), are
assigned 0644 (0666 minus 022) instead
(that is, -rw-r--r--). For directories, the
default permissions are 0777 (all per-
missions for all); with a umask of 0022,
directories are set to 0755 (drwxr-xr-x).

You can also use the umask command
to modify the mask itself. To make your
changes permanent, just enter the com-
mand in your Bash configuration file
.bashrc below your home directory.

Umask

Timestamp: Unix filesystems manage a number of time entries for a file, such as the
last access or last modified times. It is particularly important for backups, for example,
to keep the original timestamp (e.g., of the last modification) to avoid working on the
wrong file.

Environmental variable: The Shell gives each user space in which to store specific infor-
mation for access by programs. Environmental variables comprise a name and a value.

Symbolic link: A pointer to another file that is treated just like this file by application
programs. If you delete the file to which the symlink points, the link becomes orphaned.
Symlinks are created by the ln -s command.

GLOSSARY

Figure 1: cd – takes you to the last directory you visited, and back again.

Command Line: File ManagementLINUXUSER

88 ISSUE 77 APRIL 2007 W W W. L I N U X- M A G A Z I N E . C O M

-p flag to keep permissions and the
source timestamp.

You can also specify a directory as the
target. Although you can copy multiple
files to a directory, the program will not
copy directories:

$ cp folder1 folder2
cp: omitting directoryU
 "folder1"

To copy a directory, you need to tell cp
to use recursion, by setting the -r option.
However, this is not all the copy artist
can do; if you tell the command to copy
a symlink instead of a “normal” file,
cp will copy the file to which the link
points. To create a new link instead of
doing this, you need to set the -d flag.

Be careful if you specify a file of the
same name as the target; cp will just
overwrite the existing file. You can add
a safety net by specifying the -i option:

$ cp -i file1 folder/file1
cp: overwrite "folder/file1"?

Alternatively, you can talk cp into creat-
ing a backup by stipulating the -b option:

cp -b file1 folder/file1

The backup copy has a tilde (“~”) at
the end of its filename.

Let’s move!
The mv (“move”) tool can either move
or rename files. Again, you need to pass
a source and a target to the command.
The source can be a file or a directory,
and the target can be a directory, or a file
or directory name. To move a file called
file1 from the current directory to an ex-
isting folder called directory1, simply do
the following:

mv file1 directory1

If the target folder does not exist, this
command will change the file’s name to
directory1 – in other words, you just
need to specify the new name to rename
the source.

Just like cp, mv supports the -i and -b
options to protect data against inadver-
tent deletion by prompting or creating a
backup.

Clean Slate
The rm file command typically deletes
the specified file without so much as a
“by your leave”. rm (“remove”) doesn’t
hang about, and doesn’t prompt you to
see if you are really sure. The only ex-
ception to this is if you have a read-only
file; in this case, rm prompts you to con-
firm (see Listing 2).

However, this is not a recommended
approach. Instead, you might prefer to
use the -i option, which switches the
command to interactive mode (just like
it does with cp and mv):

$ rm -i file
rm: remove regular fileU
 "file"?

If you have a large number of write-pro-
tected files in a folder, and don’t like the
idea of having to confirm removal of
each file, you can use the -f (“force”)
parameter to tell rm not to ask.

For more thorough deletion, rm also
has the -r option. If you set it, rm will
happily remove subdirectories – along

with their content – recursively up to the
top of the path. Where rmdir hesitates to
remove a folder if it is not completely
empty, rm -r just blows it away. If you
are interested in seeing what is going on
behind the scenes, and where rm went,
just set the -v flag (Figure 2).

Files that start with a non-standard
characters, such as a minus sign, are
problematic; rm (and other commands)
will refuse to touch them. The reason for
this is that the shell interprets the first
character after the minus sign as a pa-
rameter, and will thus not be able to find
the intended target.

A trick helps you resolve the situation.
Type rm ./-file to delete -file, rather than
interpreting the target as a parameter. As
an alternative, you can insert two dashes
in front of the filename (rm -- -file); this
tells the command that whatever follows
the dashes is not a parameter, but rather
an argument (that is the target for the
current operation). ■

01 $ ls -l

02 -r--r--r-- 1 huhn huhn
 0 2006-12-28 16:44 file

03 ...

04 $ rm file

05 rm: remove (write-protected)
 file "file"?

Listing 2: rm
Heike Jurzik studied
German, Computer
Science and English
at the University of
Cologne, Germany.
She discovered
Linux in 1996 and
has been fascinated
with the scope of the Linux com-
mand line ever since. In her leisure
time you might find Heike hanging
out at Irish folk sessions or visiting
Ireland.

T
H

E
 A

U
T

H
O

R

Figure 2: If you forget the command-line options, use the man command to view the manpage.

LINUXUSERCommand Line: File Management

89ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M

