
28

A single Bluetooth adapter sup-
ports up to seven simultaneous
connections. You can connect a

Bluetooth printer, cell phone, and key-
board to a single adapter. You can even
use the Bluetooth adapter as an addi-
tional wireless network device. As a net-
working device, Bluetooth delivers a de-
cent throughput of up to 2Mb (for EDR-
capable devices – otherwise about
700kb) with a range of up to 100 meters
between the access point and client
(with no walls in between).

This article describes a technique for
creating an access point that allows cli-
ents to connect to a local network and
access the Internet. This configuration
is similar to a Wifi access point, only I’ll
use Bluetooth instead of a wifi adapter.
This configuration also requires
• two or more computers with Bluetooth

adapters,
• a Bluetooth-capable kernel on each

computer, and
• the Linux Bluetooth bluez-utils pack-

age on each computer.
On the computer acting as the access
point, you will also need
• a kernel with the network bridging

mode feature and the bridge-utils
package,

• a dhcp server (preferably ISC dhcpd
version 3),

• ipv4 forwarding,
• an Internet connection (if you want

 Internet access) with masquerading.
This procedure assumes the classic text-
based approach to Linux configuration.
Keep in mind that most Linux distribu-
tions provide some means for setting up
network interfaces through their own
GUIs. These GUI tools often interfere
with configuration files such as the files
described in this article.

If you experience unexpected effects
like wrong IP addresses or sudden
changes in your network configuration,
check for KDE or GNOME services that
might “automagically” change the Blue-
tooth settings. Try to configure the GUI
to avoid any changes to Bluetooth. On
the other hand, stopping all network
configuration services will probably also
kill the Internet connection on the com-
puter that’s supposed to become the ac-
cess point. Don’t despair if your configu-
ration does not work exactly as specified
in this article. It is probably not your
fault. You may have to tailor the ap-
proach to your own environment.

For my Bluetooth network, I will use
the personal area network (PAN) specifi-

cation. The alternative dialup network-
ing (DUN) method is much slower be-
cause the protocol has a lot of overhead
that is not needed for this configuration.
Note that, because I am working at the
network setup level, almost all com-
mands in this article must be issued as
root.

Setting Up a Bluetooth
Access Point
Before you start to set up your computer
as a Bluetooth access point, make sure
the Bluetooth adapter is working. If the
command hcitool dev reports something
that looks like

Devices:
 hci0 00:04:0E:92:0E:6A

You can even use Bluetooth as an

alternative form of wireless net-

working. We’ll show you how.

BY KLAUS KNOPPER

Setting up a Bluetooth wireless network

WIRELESS BLUE

N
a
th

a
lie D

ia
z
, Foto

lia

In Debian, you will have to check /etc/
default/bluetooth for BLUETOOTH_
ENABLED=1; otherwise, the Bluetooth
(or bluez-utils) init startscript won’t do
anything useful. If PAND_ENABLED is
set to 1 there, a pand process might
 already be running. Either kill it, or
 modify the PAND_OPTIONS before re-
starting Bluetooth to match the settings
described in this article.

Debian Note

Bluetooth Wireless NetworkCOVER STORY

28 ISSUE 80 JULY 2007 W W W. L I N U X- M A G A Z I N E . C O M

29

your Bluetooth adapter should be opera-
tional. Some adapters, like those from
AVM, require special firmware in /usr/
lib/hotplug/firmware. A good hint is to
check the output of dmesg shortly after
the adapter has been plugged in.

The next step is to configure the hcid.
conf file. The HCI daemon hcid needs
to know which way to set up adapters,
which services to present, and which
features to support. For a Bluetooth ac-
cess point, the HCI configuration section
shown in Listing 1 should be present in
/etc/bluetooth/hcid.conf.

The example in Listing 1 uses the
shared PIN "1234" for the pairing proce-
dure on incoming connections. That
way, you don’t have to set up individual
passwords for clients. See the article on
Bluetooth security elsewhere in this
issue for more on Bluetooth PINs.

For PAN, I need to load some kernel
modules. Usually, the Bluetooth
startscripts take care of loading the nec-
essary modules, but to make sure:

modprobe bnep

loads the required module for Bluetooth
networking. After you enter:

/etc/init.d/bluetooth restart

(or bluez-utils restart, depending on your
distribution), new clients that connect to
the Bluetooth access point will get a new
bnep* device: one for each client. (The
first client will be visible as bnep0, the
second as bnep1, and so on, and you can
set individual addresses and routes for
each of these devices.)

Of course, from the viewpoint of the
network administrator, unpredictable
network device names that each require
an IP address are very uncomfortable.
Luckily, two mechanisms make the han-
dling of these devices easier.

First, I create a “bridge” device that
will join all bnep* interfaces into a sin-
gle device with only one IP address on
the computer acting as an access point.

You need bridge-utils for this. I will use a
private Class C type network 192.168.
192.* in this example:

brctl addbr pan0
brctl setfd pan0 0
brctl stp pan0 off
ifconfig pan0 192.168.192.1

The setfd and stp lines are optional opti-
mizations that disable some Ethernet
bridging features I won’t be using.

To make this address configuration
permanent, you could (after successful
tests) add the entry shown in Listing 2 to
the file called (in Debian) /etc/network/
interfaces.

You are probably wondering where the
Bluetooth network device bnep* is actu-
ally used. Actually, I have no Bluetooth
connections yet, so no bnep* devices
have been added to the bridge. Adding
the Bluetooth devices on demand is
something that has to be done right after
a client connects.

01 #

02 # /etc/bluetooth/hcid.conf -
HCI daemon configuration file.

03 #

04

05 # HCId options

06 options {

07 # Automatically
initialize new devices

08 autoinit yes;

09

10 # Security Manager mode

11 # none - Security
manager disabled

12 # auto - Use local
PIN for incoming connections

13 # user - Always ask
user for a PIN

14 #

15 security auto;

16

17 # Pairing mode

18 # none - Pairing
disabled

19 # multi - Allow
pairing with already paired
devices

20 # once - Pair once
and deny successive attempts

21 pairing multi;

22

23 # Default PIN code for
incoming connections

24 # Please change this!

25 passkey "1234";

26 }

27

28 # Default settings for HCI
devices

29 device {

30 # Local device name

31 # %d - device id

32 # %h - host name

33 name "%h-%d";

34

35 # Local device class,
see "man hcid.conf"

36 # This class example
matches (almost) everything,

37 # including PAN.

38 class 0x3e0100;

39

40 # Default packet type

41 # pkt_type DH1,DM1,HV1;

42

43 # Inquiry and Page scan

44 iscan enable; pscan

enable;

45

46 # Default link mode

47 # none - no
specific policy

48 # accept - always
accept incoming connections

49 # master - become
master on incoming
connections,

50 # deny role
switch on outgoing connections

51 lm accept, master;

52

53 # Default link policy

54 # none - no
specific policy

55 # rswitch - allow
role switch

56 # hold - allow hold
mode

57 # sniff - allow
sniff mode

58 # park - allow park
mode

59 lp
rswitch,hold,sniff,park;

60 }

Listing 1: HCI Configuration

COVER STORYBluetooth Wireless Network

29ISSUE 80 JULY 2007W W W. L I N U X- M A G A Z I N E . C O M

I must make sure every client is asso-
ciated with the bridge on the access
point server. For on-connect tasks like
this, the pand server (which I did not
start yet) offers a mechanism through
a script that’s called every time a new
Bluetooth network device comes up:

/etc/bluetooth/pan/dev-up
#!/bin/bash
 ifconfig $1 0.0.0.0
 brctl addif pan0 $1

Although the pand man page says that
/etc/bluetooth/pan/dev-up is called with
the new per-connect bnep network device
as an argument, in my tests, it turns out
that this is not the case in bluez-utils 3.7
under Debian. You need to tell the pand
server to explicitly start the script instead
(see below). The seemingly odd line if-
config $1 0.0.0.0 just makes sure the de-
vice is functional. (The script uses the IP
address of the bridge device pan0 when
sending packets to a different network.)

Now, I am ready to start the real Blue-
tooth PAN server, pand, on the server
acting as access point:

pand --listen U
--role NAP --devup U
/etc/bluetooth/pan/dev-up

The option --role NAP tells pand that I
run in Network Access Point mode,
which sets up a network, as shown in
Figure 1. Another option would be act-
ing as a Group Network Controller (--role
GN), a kind of Bluetooth network bridge
that can add more clients to an existing

network or just work as a repeater for
client-to-client connections, thus extend-
ing the range of operation. But I’ll stay
with NAP for now.

The preceding command will look for
a local Bluetooth adapter, start the ac-
cess point server in listen mode, and
fork itself to the background. You can
watch its operation in the system log. Al-
ternatively, you can run pand in debug
mode by adding the --nodetach option.

If you have not done this before, enable
ipv4 forwarding to share your Internet
connection and enable masquerading so
that the Internet-side router does not see
any private IP networks (Listing 3).

The last iptables line in Listing 3 uses
the ISDN line(s) as an Internet gateway.
Change ippp+ to the name of the outgo-
ing interface. Of course, Listing 2 is no-
where near a complete firewall; it will let
all outbound connections through that

are initiated by Bluetooth clients. If you
have a direct and permanent Internet
connection, you should make sure that
either you are not running any vulnera-
ble services on your server or that all in-
coming connections except the neces-
sary ones are filtered. For some distribu-
tions, connection sharing is already en-
abled for local interfaces, and you won’t
need some or all of the lines in Listing 3.

An alternative method is to add the
external interface to the pan0 bridge
with brctl addif pan0 interfacename.
Unfortunately, this approach offers less
control over forwarding between local
interfaces. Still, it is worth a try if the
forwarding option doesn’t work.

Now the setup is complete on the
server, and the pand NAP service is
ready to be contacted by clients. For
convenience, I will also set up a DHCP
server so clients don’t have to set IP
parameters manually. Add the section
shown in Listing 4 to the DHCP server
config file (/etc/dhcp3/dhcpd.conf in
Debian).

And don’t forget to add pan0 to the list
of devices that dhcpd serves in /etc/de-
fault/dhcpd3-server; just add pan0 to the
INTERFACES variable there (space-sepa-
rated). After you enter the command:

/etc/init.d/dhcp3-server restart

01 [...]

02

03 auto pan0

04 iface pan0 inet manual

05 up echo "Adding ethernet bridge between LAN and PAN"

06 up brctl addbr pan0

07 up brctl setfd pan0 0

08 up brctl stp pan0 off

09 up ifconfig pan0 192.168.192.1 netmask 255.255.255.0 up

10 down echo "Removing ethernet bridge between LAN and PAN"

11 down ifconfig pan0 down

12 down brctl delbr pan0

13

14 [...]

Listing 2: /etc/ network/ interfaces excerpt

Figure 1: Configure one computer to act as an Internet access point for other devices.

To start pand automatically at bootup
via the /etc/init.d/bluetooth init script,
check /etc/defaults/bluetooth for PAND_
ENABLED=1 and PAND_OPTIONS=
"--listen --role NAP --devup /etc/blue-
tooth/pan/dev-up" (Debian).

Starting pand at Bootup

Bluetooth Wireless NetworkCOVER STORY

30 ISSUE 80 JULY 2007 W W W. L I N U X- M A G A Z I N E . C O M

dhcpd listens on the Bluetooth bridge
pan0 for DHCP requests from clients and
tells the clients which configuration to
use. Of course, you should change at
least the name server option to match
your network setup. When running your
own name server cache, you can just use
an IP address that the name server lis-
tens on. Otherwise, the setting should
match the name server given in /etc/
resolv.conf.

Setting up a Bluetooth
Network Client
The setup on the client side is much eas-
ier because all the routing and managing
is now running on the server. For the
first pairing of Bluetooth devices, you
might have to start a Bluetooth dbus au-
thentication client, as described in the
article on Bluetooth with GPRS:

passkey-agent --default U
/usr/local/bin/btpin.sh &

/usr/local/bin/btpin.sh is the shell script
that enters a pairing PIN on demand.

The Bluetooth server hcid will call this
script over dbus whenever a PIN is
needed to establish a connection.
Because an identification key is saved
after the initial handshake for devices
that have been successfully paired, you
usually won’t be asked for a PIN when
connecting later.

If an application (such as kdeblue-
tooth services in KDE) is already listen-
ing on dbus for a pairing pin request,
you can skip this command.

Now let the client search for a Blue-
tooth access point and initialize a con-
nection with

pand --role PANU --search U
--service NAP --persist U
--nodetach

If you are confident that everything is set
up right and you don’t want to leave the
shell open, you can just omit the --node-
tach option. However, without it, you

will have to check syslog for problems
because pand forks itself into the back-
ground immediately and won’t show
any errors in this shell.

At this point, the client pand scans the
network for a Bluetooth device that offer
a NAP service. Once a device is found,
the client pand connects to the server
pand, and both computers get a new
bnep device for this connection.

Sometimes, the client does not find the
server. This problem can be related to dif-
ferent Bluetooth adapter capabilities, too
much wireless noise, or simply bad luck.

In such cases, try to connect directly
to the Bluetooth address of the server’s
adapter. In this example, the adapter ad-
dress shown on the server by hcitool dev
was 00:04:0E:92:0E:6A, so the command
line would be:

pand --role PANU U
--service NAP -c U
00:04:0E:92:0E:6A U
--persist --nodetach

If this command still does not give you a
“connected” message, recheck your con-

figuration. Unless you run the server and
client in secure mode with an additional
-E and -S option for pand, chances are
that you are not being asked for a pair-
ing PIN. In general, it is better not to rely
on Bluetooth’s own encryption and au-
thentication. You should instead use SSH
or other encrypted channels for access-
ing external services.

As soon as you see a bnep0 device on
the client, you can request an IP address
and default route automatically with

pump -i bnep0

or a different dhcp client of your choice.
Alternatively, if you do not want to

use DHCP, you can set an IP address for
bnep0 manually (which should match
the network associated with pan0 on the
server) and set the default gateway to
192.168.192.1, which is the pan0 bridge
address in this example:

ifconfig bnep0 U
192.168.192.100
route add default gw U
192.168.192.1

and also set a valid name server in /etc/
resolv.conf.

Adding these commands to the file
 /etc/bluetooth/pan/dev-up (and adding
a --devup option to the pand command)
saves you the work of setting up the
bnep0 IP parameters, so it is sufficient
to just start pand to get connected.

Conclusion
Many distributions offer GUI configura-
tion for Bluetooth networking. If your
system supports the GUI alternative,
much of what I did in this article is pos-
sible with just a few mouse clicks. Still,
it helps to know the underlying technol-
ogy.

Consider Bluetooth networking when
no Wifi access point is in reach or when
Wifi simply does not work because of
traffic pollution, as is often the case at
large expos. ■

01 echo 1 >/proc/sys/net/ipv4/ip_forward

02 iptables -I FORWARD -i pan0 -j ACCEPT

03 iptables -I FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

04 iptables -t nat -I POSTROUTING -o ippp+ -j MASQUERADE

Listing 3: Configuring IP Forwarding

01 [...]

02

03 # Bluetooth network/pan0

04 subnet 192.168.192.0 netmask
255.255.255.0 {

05 option domain-name-servers
192.168.192.1;

06 option broadcast-address
192.168.192.255;

07 option subnet-mask
255.255.255.0;

08 option routers
192.168.192.1;

09 range 192.168.192.100
192.168.192.200;

10 }

11

12 [...]

Listing 4: /etc/ dhcp3/ dhcpd.
conf section

[1] BlueZ project: http:// www. bluez. org/

[2] Bluetooth information:
http:// en. wikipedia. org/ wiki/ Bluetooth

[3] PAN HOWTO: http:// bluez.
sourceforge. net/ contrib/ HOWTO-PAN

INFO

Bluetooth Wireless NetworkCOVER STORY

32 ISSUE 80 JULY 2007 W W W. L I N U X- M A G A Z I N E . C O M

