
Practical Python in LinuxCOVER STORY

22 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M22

Over the course of my career as a
system administrator, I’ve writ-
ten scripts in a variety of lan-

guages and environments (beginning
with DCL under VMS). Once I began
taking care of UNIX-based systems, I
gravitated first toward the C shell and
then to Perl, which I used for many
years. More recently, however, I have
begun using Python. Although the
choice of a scripting language is inevita-
bly a personal one, and effective scripts
can be written in any language, Python
nonetheless offers many advantages to
system administrators. For me, the most
important advantages are:
• Python is fast to learn. Administrators

with some scripting experience will be
writing Python programs in minutes
or hours rather than days or weeks.

• Python is more like traditional pro-
gramming languages than other script-
ing options. It encourages you to think

and design tools using an object
framework.

• Python’s easy-to-use interactive mode
makes exploring new features and
 debugging scripts very easy.

• Writing tools in Python often provide
cross-platform functionality for free.

• The Python community is generally
open and friendly and considers read-
able code one of its core values.

In this article, I’ll introduce you to Py-
thon by showing you a variety of actual
code snippets and short scripts, copi-
ously annotated and commented upon,
allowing you to learn about the language
in context.

First Steps
Here is the canonical first Python pro-
gram, which is exceedingly simple:

#!/usr/bin/python
print 'Hello, world!'

After the initial shell designation, the
program’s single statement prints the
specified character string to standard
output. In Python, simple things are
often simple, as is the case with the print
statement.

Python also has an interactive mode,
which you can reach by issuing the py-
thon command:

$ python
>> print 'Hello, world!'
Hello, world!

i=[1,2,3,4,5] List of integers
l=[1,2,’lion’,4.5] List elements can be
 of different types
t=(15,’tiger’,2.11) Tuple containing three
 elements
i[2]=i[-3]=3 Second element and
 third element from
 the end
i[2:4]=[3,4,5] List slice: either index
 can be omitted (e.g.,
 i[:2]=i[0:2])

Table 1: Literal Tuples
and Lists

F
ra

n
z
 P

flu
eg

l, w
w

w
.foto

lia
.d

eWe’ll introduce you to Python, an easy-to-learn scripting language,

and also help you get started creating your own practical Python

scripts. BY ÆLEEN FRISCH

Getting started with Python in Linux

HELLO PYTHON

COVER STORYPractical Python in Linux

23ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M 23

With just a little experimentation, you
can learn quite a lot about Python vari-
ables and data types, as shown in Listing
1. Listing 2 is a simple script that illus-
trates several other important Python
features. It queries a POP server for the
status of a specified user’s mailbox.

The script in Listing 2 has several no-
table points. First, the import statement
indicates Python modules that will be
used in the script (modules provide ad-
ditional capabilities over the built-in Py-
thon constructs). Here I am using the
module related to the POP3 protocol and
the system module required for script ar-
gument access. The latter are stored in a
list (array) named sys.argv[]. Individual
elements are selected with the familiar
square bracket notation. Numbering be-
gins at zero; sys.argv[0] holds the first el-
ement from the command line, namely,
the script name.

In this script, the variable who is used
to store the first argument, which is the
user account whose mailbox should be
queried. The script also defines two vari-
ables holding literal strings.

The final section of the script is where
the actual work gets done. First, it opens
a connection to the specified mail server
system via the POP3_SSL() function in
the poplib module (note the naming con-
vention: poplib.POP3_SSL()). The con-
nection’s handle (identifying data struc-
ture) is stored in the variable m.

The remainder of the script takes ad-
vantage of various methods (functions)
that are defined for POP3 connections in
the poplib module. The user() and pass_
() methods transmit authentication data
to the server, the stat() method retrieves

the number of messages present in that
user’s mailbox (as well is the amount of
space they consume), and the quit
method closes the connection.

The syntax for the method calls uses
the standard object-oriented format, in
which the method name is appended to
the object to which it applies, separated
by a period, followed by parenthesized
arguments – for example, m.user(who).

The stat() method returns a two-val-
ued tuple containing data about the
mailbox: (#messages, #bytes). The script
selects just the first element for printing
with the [0] suffix. The print statement
is a bit more complicated here; it in-
cludes a format string and a parenthe-
sized list of items to print (another
tuple), separated by a percent sign.
Here, %d and %s specify an integer and
a string value, respectively. Later, you’ll
see more examples of format codes.

Even this simple script shows how
powerful Python can be, given that que-
rying a network server takes only a few
simple statements. Many Python mod-
ules are available, including modules for
all major network servers and services.

Tuples and lists are two examples of
collections: variables that hold multiple
values. They are also known as se-
quence objects because their elements
are ordered.

Table 1 shows some examples of literal
tuples and lists. The final example illus-
trates slicing a list; you can also slice tu-
ples and character strings.

Python Control Structures
The next example explores Python state-
ments related to looping and conditional

execution. The script in Listing 3, which
converts temperatures between different
temperature scales, also illustrates script
argument parsing and some string ma-
nipulation methods.

Listing 3 introduces several important
control structures: try/except, if/else,
and for … in. The try/except construct
attempts the statement specified by try
and executes those following except
statements should the try statement fail.
Note that each keyword is followed by a
colon and that the statement blocks fol-
lowing them are indicated by indenta-
tion. In general, Python relies on inden-
tation to identify structural blocks
(rather than, say, curly braces as in C).
These two features are shared by the
two if/else constructs later in the script.

The for loop is similar to those found
in other scripting and programming lan-
guages. It has the general form for var(s)
in list:, and the specified variables are
assigned successive elements from the
list at the beginning of each loop itera-
tion. In Listing 3, the list was stored in
the variable olist, which contained a list
of tuples. Two variables were specified
in the for loop, and they were assigned
to the first and second elements of each
tuple in succession.

01 >> 3/5

02 0
 # Result of operation on
 # integers is also an integer

03 >> 3.0/6
 # Force floating point
 # operation

04 0.5

05 >> a='lion'; b='ess'; c=3
 # Define 3 variables

06 >> a+b
 # String concatenation

07 'lioness'

08 >> c+4
 # Addition

09 7

10 >> a+c
 # Illegal operation
 # (message shortened) ...

11 TypeError: cannot concatenate
'str' and 'int' objects

12 >> a+str(c)
 # ... but, Python provides
 # conversion functions

13 'lion3'

14 >> ^D

Listing 1: Working in Python

01 #!/usr/bin/python

02 import poplib,sys
 # Enable Python modules

03

04 who=sys.argv[1]
 # Store the first script
 # argument

05 pw="xxxxxxxx"

06 mailsrv="mail.ahania.com"

07

08 m=poplib.POP3_SSL(mailsrv)

 # Open secure connection to
 # POP3 server

09 m.user(who)
 # Authenticate

10 m.pass_(pw)

11 print "There are %d messages
waiting for %s." %
(m.stat()[0],who)

12 m.quit

Listing 2: Getting the
Mailbox Status

Practical Python in LinuxCOVER STORY

24 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

The getopt() function is used to parse
the command-line arguments. It takes

the argument list and a string indicating
valid argument letters (and other infor-

mation). Here, it is passed all of the
script arguments except the final one
(which was previously stored in the vari-
able temp), and the valid arguments are
defined as -c, -k, -f and their uppercase
counterparts. The function checks speci-
fied arguments for validity in the pres-
ence of required values, generating er-
rors as appropriate. Once the getopt()
parsing is complete, the script goes on
to process the arguments as appropriate.

In this case, the script performs a
string comparison for equality. Python
supports several comparison operators:
== (equality), != (inequality), and <
and > (less than and greater than, re-
spectively, either of which may be fol-
lowed by =). Complex logical condi-
tions can be constructed with parenthe-
ses and the keywords and, or, and not.

String Operations
Listing 3 introduced the lower() method
for strings. The corresponding upper()
method for conversion to uppercase and
a title() method for title-style capitaliza-
tion also exist. Listing 4, which down-
loads a file from a website and processes
its contents, introduces string searching
and substring extraction. The first part of
the file initiates an HTTP connection to a
site on the Internet and retrieves a file
containing currency exchange rate data,
ultimately storing its contents into the
variable rates.

The second part of the script extracts
the most recent rate for the US dollar
and the foreign currency specified as the
script’s first argument. For each cur-
rency, the data in rates is searched for a
specified character string according to
the index() method, which returns the
character location of the first occurrence.
A slice is used to extract the relevant line
from rates, beginning at the location re-
turned by index() and continuing
through the location of the first subse-
quent carriage return-linefeed. The latter
illustrates the use of the optional second
argument to the index() method, which
indicates the location within the string at
which to begin searching (the default is
the beginning, character 0).

Here is an example of the data that
would be extracted for a specific cur-
rency (in this case, yen):

intlline=Yen,0.0086864,
0.008691,0.008730,0.008731,

01 #!/usr/bin/python

02 import sys #If you import modules as the next

03 from getopt import * #line, methods can be invoked

04 #without the preceding module name

05 is_c=0

06 print_k=0

07 temp=sys.argv[-1] #Find script argument holds temperature

08 try: #Attempt an operation, but...

09 t=float(temp)

10 except: #...catch any errors and exit

11 print "%s is not a temperature." % temp

12 sys.exit(1)

13

14 # parse script arguments #getopt returns a list of (-x, val)
 #tuples in olist

15 olist,alist = getopt(sys.argv[1:-1],"cCfFkK")

16 for opt,a in olist: #Loop: variables are assigned elements
 #of each tuple in olist

17 if opt.lower()=='-c': #Covert option to lowercase and compare

18 is_c=1

19 if opt.lower()=='-k':

20 print_k=1

21

22 t=eval(temp) #Covert string to number and do the math

23 if is_c==0:
Fahrenheit to Celsius

24 ftemp=t

25 ctemp=(t-32.0)*.55

26 else:
Celsius to Fahrenheit

27 ctemp=t

28 ftemp=(t*1.8)+32.0

29 ktemp=ctemp+273.0

30

31 if print_k: #Print Kelvin only if requested

32 print "%.1f Fahrenheit is
 %.1f Celsius is %.1f K." %
 (ftemp,ctemp,ktemp)

34 else:

35 print "%.1f Fahrenheit is
 %.1f Celsius." %
 (ftemp,ctemp)

Listing 3: Converting Temperatures

COVER STORYPractical Python in Linux

25ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

0.008465,0.008513
intlline.split(",")[-1]=0.008513

The split() method divides a string into a
list of elements delimited in the original
string by a specified separator character.
Here, I use split() with a comma separa-
tor character to divide the extracted
string, and I use the [-1] suffix to retrieve
the final element within the desired line
(the most recent exchange rate). The
script concludes by computing the ex-
change rate between the specified for-
eign currency and the US dollar (on the
basis of Canadian data available on the
Internet) and printing the result. The
final conditional statement ensures that
the printed information is in the most
easily understood form. The format
codes in these print statements include
those for floating-point numbers (f),
along with output field width values of
four and six characters (respectively),
with two places to the right of the deci-
mal point for both.

Other useful string methods of which
you should be aware are replace(),

which replaces of substring with new
content, find(), a more powerful sub-
string location method, and strip() and
its variants lstrip() and rstrip(), which
remove leading and trailing white space.

So far, I have considered a couple of
types of network operations, as well as
string manipulation and arithmetic com-
mutations. In this next script, I turn to
the filesystem.

01 #!/usr/bin/python

02 import httplib
 # Module for HTTP operations

03 url = "/en/markets/csv/
exchange_eng.csv"

04 c = httplib.
HTTPConnection("www.
bankofcanada.ca")

05 c.request("GET", url)

06 r = c.getresponse()

07 rates = r.read()

08 c.close()

09

10 intl = rates.index(sys.
argv[1])

11 us = rates.index("U.S.
Dollar")

12 intlline = rates[intl:rates.
index("\r\n", intl)]

13 intlrate = intlline.
split(",")[-1]

14 usline = rates[us:rates.
index("\r\n", us)]

15 usd = usline.split(",")[-1]

16 rate= float(intlrate)/
float(usd)

17 if rate >= .25:

18 print "%4.2f US Dollars = 1
 %s" % (rate,sys.argv[1])

19 else:

20 print "1 US Dollar = %6.2f
 %s" % (1.0/rate,sys.
 argv[1])

Listing 4: Downloading and Processing

Advertisement

Practical Python in LinuxCOVER STORY

26 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

Python provides an easy mechanism
for traversing a directory tree to poten-
tially operate on some or all of the files
found within it – the walk() method
within the os module.

Walking the File System
The example in Listing 5 is a favorite for
illustrating the walk() method within the
os module because it can be accom-
plished quite easily: by changing file ex-
tensions. Listing 5 also illustrates the Py-
thon standard practice of implementing
functionality as methods to aid in code
reuse. Note that all that is required syn-
tactically is the initial def keyword, the
colon following the calling sequence,
and the indented block of statements
composing the method code.

After removing any initial periods
from the specified old and new exten-
sions, the method calls os.walk(). The
latter returns a list of three element tu-
ples, each containing a subdirectory and
file name lists for each directory it en-
counters. Two for loops iterate over each
successively lower directory and the files
within it. The split() method is used to
divide the file name at period boundar-
ies, and the [-1] index again retrieves the
final component, the file extension (try
similar commands in interactive mode
to see how they work). If it matches the
target extension, then a new file name
(new_f) and path are constructed and
passed to the os.rename() method.

The code in the final section of the
script is included as a convenience so
that the file containing the method can
also be executed directly, as well as
being callable by other Python scripts;
the code tests the current method name
to indicate whether it is the main rou-
tine. If so, the code checks that a suffi-
cient number of arguments have been
passed (but a production-worthy script
would perform more sanity checks)
before invoking the method.

Accumulating Data with
Dictionaries
Logfile searching in processing is
another task that admins frequently per-
form and for which Python is well
suited. Such operations often take ad-
vantage of Python dictionaries: arrays
indexed by (typically) textual keys rather
than integers/ integer position. The struc-
tures are called associative arrays in

other languages. Here’s an example of
a literal dictionary and two assignments
involving dictionary elements:

temps={"boil":212, U
"freeze":32,
"scald":120, "cold":10}
temps["hot"]=110
t=temps.get("tepid",66)
Return requested value or
specified default if undefined

The second statement adds an element
to the dictionary for the key hot (value
110). The final statement retrieves the
value for the key tepid, if such an ele-
ment exists; otherwise, it returns the
value 66.

The script in Listing 6 produces a re-
port of error types and counts in the
/var/log/messages logfile. The file de-
fines a general function that opens and
reads a logfile, splits each line into fields
at spaces and other white space, and
compares a specified field (index which)
to the string stored in match, looking for
relevant lines. When a relevant line is
found, the data in the field designated in
collect becomes a dictionary key; the cor-
responding value is the count of occur-

rences for that key within the file. The
dictionary get() method’s default value
feature is used to initialize a count for
new keys to 1.

The second portion of the script calls
the generic function I’ve created, looking
for messages from the sudo facility
within /var/log/messages and recording
the user name present in each entry.
This code also illustrates the use of a
variable for the format string within a
print statement. The format codes within
it include what appears to be a negative
field width value; in fact, the minus sign
indicates that the output should be left-
justified within the field. Here is some
sample command output:

sudo Command Usage by User
User Times
aefrisch 5
chavez 191
root 100

GUI Scripts with Tkinter
Creating programs and tools with a
graphical interface is also easy and rapid
with Python. Several different graphical
modules are available. The most used is

01 #!/usr/bin/python

02 import os

03

04 def mass_mv(dir, old, new):
 # Define a method
 # (subroutine) with three
 # arguments

05 if old[0] == ".":
 # Remove initial period
 # from old and new
 # extensions if present

06 old = old[1:]

07 l=len(old)
 # Save length of the old
 # extension

08 if new[0] == '.': new =
 new[1:]

09 # # os.walk
 # returns list of:
 # (path, dirnames,
 # filenames)

10 for path, ignore, files in
 os.walk(dir):

11 for f in files:
 # Loop over files in each
 # subdirectory

12 if f.split(".")[-1] ==
 old:

13 new_f = f[0:-l]+new

14 os.rename(path+"/"+f,
 path+"/"+new_f)

15 return
 # End of method mass_mv

16

17 if __name__=='__main__':
 # True when script file is
 # executed directly

18 import sys

19 if len(sys.argv) < 4:

20 print "Too few args:
 start-dir old-ext
 new-ext"

21 sys.exit(1)

22 mass_mv(sys.argv[1], sys.
 argv[2], sys.argv[3])

Listing 5: Changing Extensions

COVER STORYPractical Python in Linux

27ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

01 #!/usr/bin/python

02 from Tkinter import *

03

04 window = Tk()
 # Create root window

05 window.title("Hi.")
 # Set window title text

06 w = Label(window,text="Hello,
world!")

07 w.pack()
 # Finalize and construct the
 # label

08 q = Button(window,text="Quit",
fg="red",command=window.quit)

09 q.pack()
 # Finalize and construct the
 # button

10

11 window.mainloop()
 # Event loop: wait for user
 # input

Listing 7: Python GUI
with Tkinter

probably Tkinter. Listing 7
is a simple script that il-
lustrates some of Tkinter’s
most basic features.

Listing 7 imports the
required module, again
using the syntax that
allows you to omit the
module name prefixes
from method invocations. Next, it cre-
ates the root window, in which all other
graphical entities will reside, and sets its
title text. Then it adds a text label and a
button to the window. Each item must
call its pack() method before it actually
appears. The script ends by entering the
main event loop, waiting for user input
to which it will respond.

The button creation statement speci-
fies the window in which the button will
reside, the text that will appear on it, the
color of that text, and a command that
will be executed when the button is
pushed. The latter is known as a call-
back, and it is typically a function call
to a built-in routine or any method pro-
vided by the programmer (the former in
this case). Figure 1 shows what the re-
sulting window looks like (its appear-
ance will vary somewhat depending on
the window manager).

Pressing the Quit button
invokes the window’s quit
method, which terminates
the event loop and de-
stroys the window.

I will now examine a
more complex GUI utility
for signaling system dae-
mons, designed to restart

or reinitialize running servers on de-
mand. It generates checkboxes for vari-
ous daemons dynamically according to
the entries in its configuration file. Some
sample entries are as follows:

Label:Type:Name-or-Command
Cron:i:cron
Syslog:h:syslogd
xInetd:h:xinetd
Mail:s:/etc/init.d/ U
postfix reload
Printing:i:cups

The fields hold the text for the checkbox,
the signaling method type, and the dae-
mon name (or complete command).

The script in Listing 8 begins with im-
port statements, followed by a method
definition, which I’ll examine later. It
then creates the main window, sets its
title, and adds some text:

Each line of the configuration file is
split into the three-component field at
the colon delimiters. All three are stored
in successive elements of the dconfig list
by the list append() method; the last
character of the third field is dropped
(the newline character). An integer vari-
able is appended to the states list and
initialized for use with Tkinter controls.
Finally, a checkbutton is created for each
entry with the configuration file label
(the first field) as the button text.

The resulting checkbox is controlled
by a variable – the corresponding ele-
ment of states – by which its value can
be set, queried, or both. This section of
the script ends by creating two buttons:

01 #!/usr/bin/python

02

03 def count_em(logfile_pathname,
which,match,collect):

04 counts = { }
 # Initialize dictionary

05 lf = open(logfile_pathname,
 "r")

06 contents = lf.readlines()
 # Place entire file into
 # contents

07 for line in contents:

08 fields = line.split()
 # Split on any whitespace

09 if fields[which] ==
 match :

10 what=fields[collect]

11 counts[what] = counts.
 get(what, 0) + 1

12 return counts

13

14 if __name__=='__main__':

15 sudo_users = count_em("/var/
 log/messages",4,"sudo:",5)

16 format = "%-8s %-5s"
 # Define print format
 # string for multiple use

17 print "sudo Command Usage by
 User"

18 print format %
 ("User","Times")

19 users = sudo_users.keys()
 # Extract dictionary keys
 # into a list...

20 users.sort()
 # ...sort the list of
 # users...

21 for u in users:
 # ...and print data in
 # sorted order

22 print format % (u, sudo_
 users[u])

Listing 6: Report of error types

Figure 2: A practical Python GUI.

Figure 1: Tkinter lets you

create a Python GUI in just

a few steps.

Practical Python in LinuxCOVER STORY

28 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

one to signal the selected daemons, and
one to exit the utility and start the event
loop. The command argument to the
first button deserves special attention for
its use of the lambda function, which
causes the specified method to be passed
to the control rather than being executed
immediately (try creating a control with
a callback with and without this con-
struct to understand its function). Figure
2 shows an example of how the resulting
window looks.

Listing 9 is the callback function
(which would actually appear at the be-
ginning of the script file). It examines
the status array. For elements that are
equal to 1 – corresponding to elements
whose boxes are checked – it generates
the appropriate command on the basis of
the second type field: type i commands
are started with the restart keyword to a
script in /etc/init.d whose name is in the
configuration file’s third field; type h

acommands are sent a HUP signal via
the killall command with the name in
the third field as its argument, and any
other type uses the third field as the en-
tire command to execute.

The constructed command is executed
by the os.popen() module, which exe-
cutes an external shell command. The
final act of the method is to reset the
checkbox for each item. Note that this
script does not do enough error checking
for a production script, but it does illus-
trate many useful Python features.

Exploring More
I’ve only explored some basic Python
features here, but you should be well
prepared to learn more about Python on
your own. Two of Python’s most useful
features that I have not examined is
classes and extensions written in other
programming languages. Python makes
both object-oriented programming and

interfacing to methods and programs
in languages like C, C++, and Fortran
straightforward. See the Info box for
more information. ■

01 def do_it(s,d):
 # Callback function
 # for button

02 for i in range(len(s)):
 # Examine status list: ...

03 if s[i].get() == 1:
 # if box is checked,...

04 start=i*3

05 name=d[start]
 # unpack corresponding
 # fields from the
 # list...

06 type=d[start+1]

07 cmd=d[start+2]

08 if type=="i":
 # set up appropriate
 # command...

09 the_cmd="/etc/init.
 d/"+cmd+" restart"

10 elif type=="h":

11 the_cmd="killall -HUP
 "+cmd

12 else:

13 the_cmd=cmd

14 os.popen(the_cmd)
 # run it...

15 s[i].set(0)
 # ...and reset
 # checkbox

Listing 9: Callback
Function

[1] Syntax summary for this article:
http:// www. aeleen. com/ python_sum-
mary. htm

[2] Official Python website:
http:// www. python. org

[3] Python Cookbook (examples): http://
aspn. activestate. com/ ASPN/
Cookbook/ Python

[4] “Instant Python” by Magnus L. Het-
land: http:// www. hetland. org/ python/
instant-python. php

[5] “Python Short Course” by Richard P.
Muller: http:// www. wag. caltech. edu/
home/ rpm/ python_course

INFO

01 #!/usr/bin/python

02 from Tkinter import *

03 import os

04

05 def do_it(s,d):
 # Code listed and described
 # below

06

07 w=Tk()
 # Create main (root) window

08 w.title('Restart System
Processes')

09 txt=Label(w,text='Select the
daemon(s) to restart:')

10 txt.pack()

11

12 # The next portion of the
script is concerned with
processing the configuration
file and adding checkboxes
to window for the various
entries:

13

14 states=[]
 # Initialize lists and
 # variable i

15 dconfig=[]

16 i=0

17 dfile=open('/usr/local/sbin/

daemons.conf','r')

18 devils=dfile.readlines()
 # Get daemon list from
 # config file...

19 for d in devils:
 # ...store data...

20 (dlabel,dtype,dcmd)=d.
 split(":")

21 dconfig.append(dlabel)

22 dconfig.append(dtype)

23 dconfig.
 append(dcmd[0:-1])

24 states.append(IntVar())
 # ...and create button

25 c=Checkbutton(w,text=dlabel,
 variable=states[i],width=6)

26 c.pack()

27 i+=1

28

29 q=Button(w,text='Do
It!',command=lambda:do_
it(states,dconfig))

30 q.pack()

31 q=Button(w,text='Quit',command
=w.quit)

32 q.pack()

33

34 w.mainloop()

Listing 8: Adding Options to the GUI

