
34

Stackless Python [1] by Christian
Tismer extends the popular Py-
thon interpreter, adding elements

that facilitate the development of scal-
able applications. Small, independent
program sections are encapsulated in
tasklets. These tasklets use channels to
communicate in an approach reminis-
cent of the Erlang [2] and Oz [3] lan-
guages. The name Stackless refers to the
encapsulated functions that tasklets

allow to be swapped out from stack [4]
to heap [5] (dynamic) memory. Data
stored at this location can be accessed
at any time, regardless of the order in
which it arrived. Figure 1 shows how
this approach can save memory, espe-
cially with parallel functions.

This architecture gives programmers
the ability to use functions as coroutines
[6]. Coroutines are characterized by the
peer relationships in which they coexist.

In contrast to the legacy threads pro-
vided by the Threading module, several
thousand tasklets can run simultane-
ously. Tasklets are considered light-
weight because they can be switched
several hundred thousand times per sec-
ond. If you have a task that relies on this
ability, a stackless implementation will

As of this writing, no Stackless Python
binary packages are available for any
distribution. You will need to use Sub-
version to download the current release;
the Stackless homepage points to the
current address. Versions for Python 2.4
and 2.5 are available. After download-
ing, just follow the normal steps to build
and install:

./configure --prefix=U

/targetdirectory/

make

make install

ln -s /targetdirectory/bin/
python U

/usr/local/bin/stackless

The softlink avoids possible conflicts
with your existing Python installation.
For more details, refer to the Stackless
documentation on the project home-
page.

Installation

01 Python 2.5 Stackless 3.1b3
060516 (release25-maint:53626,
Feb 3 2007, 15:30:37)

02 [GCC 4.0.3 (Ubuntu
4.0.3-1ubuntu5)] on linux2

03 Type "help", "copyright",
"credits" or "license" for
more information.

04 >>> import stackless

05 >>> def f():

06 ... print "1"

07 ... stackless.schedule()

08 ... print "2"

09 ...

10 >>> f_task = stackless.
tasklet(f)()

11 <stackless.tasklet object at
0xb7d50e2c>

12 >>> stackless.schedule(None)

13 1

14 >>> stackless.schedule(None)

15 2

Listing 1: First Steps

The Stackless extension brings lightweight processes to Python,

opening a new style of programming with dynamic heap access.

BY STEPHAN DIEHL

Programming with Stackless Python

IN THE HEAP

M
ich

a
l A

. V
a
la

sek, w
w

w
.p

h
oto

ca
se.co

m

Stackless PythonCOVER STORY

34 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

35

be far faster than a threaded version.
The online role-playing game, Eve
Online [7], is a good example of this.

It is no coincidence that CCP [8], the
people behind Eve Online, help to keep
Stackless Python up to date. Apart from
CCP, Ironport [9] also uses Stackless for
its network security appliances.

Keeping to the Schedule
Stackless relies on a cooperative sched-
uler that uses a round-robin approach
[10]; that is, it lets every tasklet run in
succession for a short while. Although
programmers can pretend that the task-
lets are actually running parallel to one
another, this is not strictly true; this said,
there are moves to extend Stackless Py-
thon to support parallel execution. For
the time being, programmers have to live
with the fact that the whole program
freezes if a tasklet freezes. Wherever
possible, it is critical to avoid system
calls that slow down an application such
as network or database connections.

The main program relies on the task-
lets’ cooperative behavior; as soon as a
tasklet is called by the scheduler, it has
full control of the program flow. The
tasklet has two options for returning
control to the program:
• making a call to stackless.schedule();
• reading or writing on a channel.
stackless.tasklet(function)() initializes a
tasklet and activates it in the scheduler.
Listing 1 shows the first steps in the in-
teractive interpreter. This slightly convo-
luted code gives you the same results:

t = stackless.tasklet()
t.bind(f)
pass in f start parameters:
t.setup()
Append t to scheduler list:
t.insert()

In legacy threading, the main program is
also a thread. In line with this, Stackless
has a main tasklet.

In Listing 1, the main tasklet hands
control over to f_task the first time it
calls stackless.schedule(). f_task‘s call
to schedule() then hands control back
to the interactive console. The console
waits for input at this point, so nothing
happens initially. The scheduler then
lets f_task run its final command.

Listing 2 shows a simple program that
does not really do much more than the
previous example. It creates two tasklets,
but this time it starts processing them by
calling stackless.run().

In contrast to stackless.schedule(), the
tasklet that is called – the main tasklet
in this case – is removed from the sched-
uler. The call finishes when the sched-

uler runs out of tasklets, and the parent
process is then scheduled (Figure 2).
Like all the other examples in this arti-
cle, the program shown in Listing 2
is available for download at the Linux
Magazine website [11].

If the main program of Listing 2 were
to use schedule() instead of run(), the
results would be different; neither tasklet
would even reach the print c, 'after' line
in f() because the main program would
exit before running the outstanding task-
lets. Listing 3 demonstrates the use of
channels with an example of a fairly in-
efficient sort algorithm. As you can see,
Stackless’ program flow is deterministic,
in contrast to operating system threads.

Only one tasklet runs at any time,
which means that genuine parallel pro-

Figure 1: CPython stores the data belonging to a subroutine in stack memory above the

function that is superordinate to the subroutine in the hierarchical structure. Stackless

Python swaps tasklets out to heap memory.

1 2 3 4 5

Stack

Heap

f f
g

f
g
h

f
g

f

1

2

3

4

5

def f():
 g()
 return

def g():
 h()
 return

def h():
 return

f()

1 2 3 54

Stack

Heap

f g f g

f g

1

4

5
3

2
def f():
 schedule()

def g():

 return

schedule()

 return

 schedule()

tasklet(f)()
tasklet(g)()

Python

Stackless Python

Figure 2: The order in which the program from Listing 2 is executed.

def f(c):
 print c, ’vorher’
 stackless.schedule()
 print c, ’nachher’

c=’b’ task b

5

7

def f(c):
 print c, ’vorher’
 stackless.schedule()
 print c, ’nachher’

c=’a’ task a

4

6

1
2
3
8

0 6

7

8

5 a b

b

m

0

1

2

3

4

m

m

m

a

a b

a b

b a

stackless.tasklet(f)(’a’)
stackless.tasklet(f)(’b’)
stackless.run()

task m

01 import stackless

02

03 def f(c):

04 print c, 'before'

05 stackless.schedule()

06 print c, 'after'

07

08 stackless.tasklet(f)('a')

09 stackless.tasklet(f)('b')

10 stackless.run()

Listing 2: example.p

COVER STORYStackless Python

35ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

cessing does not occur even on multipro-
cessor systems.

Besides this, tasklets decide them-
selves when they hand over control of
program flow; thus, there are no external
factors that the program cannot handle.

network_simulation.py implements
a simple network simulation. The main
elements are nodes that represent net-
work-attached computers and hubs that
connect the computers. A node receives
packets and forwards any packets not
addressed to it.

A hub receives packets and forwards
them to all the devices connected to the
network.

To keep things simple, all the objects
have just one reception channel. Listing
4 shows the basic structure of the nodes
and hubs.

Whether you have 10 or 1000 comput-
ers, it makes no difference in the simula-
tion. Each element acts independently of
all other elements, with communications
simply relying on the messages that they
exchange.

When designing program flow, it is
important to avoid tasklets blocking
each other. In our example, the individ-
ual elements block the program flow
until a message reaches the control
channel.

The tasklets also take a break when
they have something to send. This
makes the program loop for the hub
slightly more complex (see Listing 5).

The hub will only send a message
when a node or hub is listening at the
other end of the line. The out.balance <
0 request takes care of this. Additionally,
the hub needs to pick up incoming pack-

01 import stackless

02 import random

03

04 numbers = range(20)

05 random.shuffle(numbers)

06 print numbers

07 print 'Sorting...'

08

09 def counter(n, ch):

10 for i in xrange(n):

11 stackless.schedule()

12 ch.send(n)

13

14 ch = stackless.channel()

15 for each in numbers:

16 stackless.
tasklet(counter)(each, ch)

17 stackless.run()

18 rlist = []

19 while ch.balance:

20 rlist.append(ch.receive())

21 print rlist

Listing 3: sort.py

01 class HUB(Actor):

02 def __init__(self, name, in_
channel):

03 Actor.__init__(self, name,
in_channel)

04 self.connectors = []

05 self.messages = []

06

07 def action(self, msg):

08 # dispatch incoming packet
to all connected devices

09 self.messages.append(msg)

10 while self.messages:

11 msg = self.messages.

pop()

12 conn = self.connectors[:]

13 while conn:

14 out = conn.pop()

15 if out.balance < 0:

16 out.send(msg)

17 else:

18 conn.insert(0,out)

19 if self.in_channel.
balance > 0:

20 self.messages.
append(self.in_channel.
receive())

21 stackless.schedule()

Listing 5: Class HUB in network_simulation.py

01 class Element:

02 def __init__(self, channel):

03 stackless.tasklet(self.
taskloop)(channel)

04 self.channel = channel

05

06 def taskloop(self):

07 while True:

08 message = self.channel.
receive()

09 # do something with the
message

10 [...]

Listing 4: The Elements in network_simulation.py

01 import stackless

02 import pickle

03

04 def squareroot(x):

05 # Newton method

06 print

07 print "Square root of ",x

08 print "-------------"

09 i = 0

10 y = x

11 print i, ":", y

12 while True:

13 i += 1

14 y = (y + x/y)/2.0

15 print i, ":", y

16 stackless.schedule()

17

18 if __name__ == '__main__':

19 import sys

20 x = float(sys.argv[5])

21 task = stackless.
tasklet(squareroot)(x)

22 stackless.schedule()

23 stackless.schedule()

24 print 'pickle'

25 pickled_task = pickle.
dumps(task)

26 task.remove()

27 print 'unpickle'

28 newtask = pickle.
loads(pickled_task)

29 newtask.insert()

30 stackless.schedule()

31 stackless.schedule()

Listing 6: squareroot.py

Stackless PythonCOVER STORY

36 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

ets. If the balance attribute of
a channel is positive, another
network node is waiting to
send something.

Pickled
squareroot.py in Listing 6
shows a less well known
Stackless feature; tasklets can
be stored in a binary format –
this is referred to as pickling
in Python speak.

The internal state of the
tasklet is kept and can be re-
stored at a later stage. The
sample program uses New-
ton’s method to calculate
the square root of a number.

squareroot.py generates the
output shown below with a

parameter of 2:

$ stackless squarerootU
.py 2

Square root of 2.0

0 : 2.0
1 : 1.5
2 : 1.41666666667
pickle
unpickle
3 : 1.41421568627
4 : 1.41421356237

After storing the tasklet, you
can run it in another process,
on another machine, and pos-
sibly even on another archi-
tecture. ■

[1] Stackless Python: http:// www. stackless. com

[2] Erlang: http:// www. erlang. org

[3] Oz: http:// www. mozart-oz. org

[4] Stack: http:// en. wikipedia. org/ wiki/ Stack_(data_structure)

[5] Heap: http:// en. wikipedia. org/ wiki/ Heap

[6] Coroutine: http:// en. wikipedia. org/ wiki/ Coroutine

[7] Eve Online: http:// www. eve-online. com

[8] CCP: http:// www. ccpgames. com

[9] Ironport: http:// www. ironport. com

[10] Round-robin approach:
http:// en. wikipedia. org/ wiki/ Round_robin

[11] Listings: http:// www. linux-magazine. com/ Magazine/
Downloads/ 81

[12] Pypy: http:// codespeak. net/ pypy/ dist/ pypy/ doc/ news. html

INFO

task=stackless.tasklet (<function>)
(<function arguments>) Creates a tasklet task

stackless.schedule() Switches to next tasklet

stackless.run() Switches to next tasklet
 and removes itself from
 the scheduler list

channel=stackless.channel() Creates a new channel
 object channel

channel.send(message) Sends message to channel;
 the tasklet blocks until
 message has been picked up

message=channel.receive() Receives message from
 channel; the tasklet blocks
 until message has arrived

channel.balance < 0: Somebody is waiting to
 receive #new line > 0: some-
 body is waiting to send

Table 1: Stackless Classes and Functions

Advertisement

COVER STORYStackless Python

37ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

