
54

Shortly after the millennium, a
number of major league multi-
media corporations joined forces

to found the Khronos Group. 3Dlabs,
ATI, Discreet, Intel, Nvidia, SGI, and Sun
Microsystems all wanted to create a
cross-platform multimedia library using
the lean and successful OpenGL as a role
model. Thanks to this standardized in-
terface, programmers would be able to
concentrate on their work rather than
wasting time thinking about hardware
and how to control it.

Just a year later, specification 1.0 of
the Open Media Library [1] (or OpenML
– not related or even good friends with
OpenMP, a library for shared memory
parallelism, or OpenAL, a library for
sound output) was released. The whole
enchilada was done – the interfaces, the
internal functions – and the Khronos
Group (see the “Khronos Group” box)
stood back, celebrated, promised sup-

port at
all kinds

of confer-
ences, and waited

for something to hap-
pen. Developers all over the

world now knew what the inter-
face looked like, but there were no signs
of a tangible implementation of the li-
brary, not to mention matching drivers
or hardware.

Knight in Shining Armor
Luckily, major components of OpenML
are based on work done by graphics spe-
cialists SGI. SGI already had the digital
media-handling SDK (dmSDK) in its
portfolio before dmSDK was integrated
with the new multimedia library. This
probably also explains the fairly rapid
agreement on the new standard. SGI
grabbed this opportunity by the
scruff of its neck and developed the
OpenML SDK from dmSDK. At
this point, the Khronos Group
took over the helm and nomi-
nated the results as its reference
implementation. To promote
more widespread use, SGI Free
Software License C, or FreeC for
short, was added to additionally
support free commercial use [2].
This was in 2004. Since then, the
reference implementation has led
the life of a wallflower on Source-
Forge. The only program to fly the

OpenML flag is Jahshaka (Figure 1),
the semi-professional video editing and
compositing program, although it is not
generally considered the best of role
models because of its quirky controls
and tendency to crash [3].

Benefits
Today, the OpenML idea is
still firmly in the dol-
drums, although it
doesn’t de-
serve it; in
fact, the

Multimedia applications with OpenML

DOWN THE PATH
Programming multimedia applications in Linux used to be

a tedious process, demanding specialized libraries and

even custom code for addressing hardware

directly. The OpenML library offers a

simpler approach.

BY TIM SCHÜRMANN

OpenMLKNOW-HOW

54 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

K
en

n
y

 C
h

a
o, Foto

lia

55

library is definitely worth looking at. It
not only standardizes and simplifies ac-
cess to a computer’s set of multimedia
devices, it also helps to synchronize
media and simplifies buffer handling. All
of this is independent of the operating
system and free of charge: Anyone can
drop the specifications into a library and
use the existing reference implementa-
tion in their products, whether commer-
cial or open source.

In a similar style to OpenGL, OpenML
just lays a thin abstraction layer over the
existing multimedia hardware. Program-
mers can use a lean C API to talk to the
hardware; the API is not only easier to
handle but much easier on systems in
which resources are scarce – embedded
systems is just one example. Just as 3D
engines rely on OpenGL, a special high-
level library could rely on OpenML, and
this, in turn, guarantees versatility and
flexibility.

Core Issues
As I mentioned earlier, the founding fa-
thers of OpenML have simply combined
standards to create a new one (see Fig-
ure 2). It only follows that OpenML com-
prises several components or parts, each
of which handles a specific task (see
Figure 3).

The core of OpenML is the Media
Library (ML). It is the same as SGI’s
dmSDK for the main part. Its functions
retrieve video and audio material from
attached media devices and process the
multimedia data, synchronizing the data
where needed and displaying it on an
output device.

The core library is supported by the
OpenML Display Control Library
(MLdc). It controls one or more output
devices, such as the monitor, a TV, or
even a wall full of displays. In addition
to this, the MLdc handles fine tuning by,
say, modifying the video format or im-
plementing gamma correction. This al-
lows an application to determine what to
display on which monitor. MLdc also
originated with SGI, or with the XSGIvc
extension to X11 to be more precise.

The third known component that the
Khronos Group assimilated was the pop-
ular OpenGL, to which a couple of ex-
tensions were added. This component
handles 3D graphics and video and must
be implemented by any OpenML-compli-
ant graphics card. This means you can

use graphics or videos as textures, per-
form fast color correction, enable image
enhancement, or convert color spaces.
In addition, users gain the ability to use
interlaced material (such as video mate-
rial that uses the European TV standard,
PAL [4]).

The last OpenML component helps
to synchronize data streams. To do so,
it runs a number of timers in the back-
ground. The time source is always unad-
justed system time (UST), or in plain
English, The system time. OpenML addi-
tionally assigns a sequence number to
each sample in each data stream. This
would mean enumerating each frame in

a video or each sample in audio mate-
rial. OpenML dubs these labels “media
stream counters” (MSCs). The relation-
ship between the MSC and UST is the re-
fresh rate. This would be 25 frames per
second for video material. This provides
a simple approach to synchronization or
correction.

Sound Shifting
After all those acronyms, an example
that illustrates how to use OpenML is
probably a good idea. The approach is
similar to that in the OpenML Media
Library Software Development Kit Begin-
ner’s Guide [5] on how to output an

The Khronos Group was founded in
January 2000. Ever since, it has devel-
oped various multimedia interfaces in
the style of OpenGL. The best known of
these is probably OpenGL ES, a custom-
ized OpenGL for embedded systems.
At the end of last year, the consortium
finally took over maintainership and
ongoing development of the OpenGL
standard.

The members of the Khronos Group split
up into three groups, which have more
or less to say in the standardization
process, depending on the amount of
money they have invested.

Application developers can use the
OpenML specifications and the reference

implementation (SDK) free of charge.
They are also allowed to implement the
specification free of charge and to dis-
tribute it in combination with other prod-
ucts. If you like, you can advertise with
the OpenML logo on your homepage for
free.

For an annual fee, you can become an
open member and contributor. This rank
allows you to participate actively in vari-
ous working groups.

Promoters (the steering group)
mainly comprise the founders of the
Khronos Group, the guys with the big
money. They have a final veto right and
define the organization’s aims and
policies.

Khronos Group

Figure 1: The Jahshaka video effects tool relies on OpenML.

KNOW-HOWOpenML

55ISSUE 82 SEPTEMBER 2007W W W. L I N U X- M A G A Z I N E . C O M

audio signal via the sound card. The
audio data have already been read from
disk and stored in main memory –
OpenML does not help with this. Follow-
ing standard programming practice, I
will use a reserved memory block as a
buffer.

Headers
As with any C program, this program
must have the right headers to start. For
an OpenML program, these headers in-
clude ml.h, for access to the core library,
and mlu.h, which provides functions
that rely on the core library.

Climbing the Tree
OpenML neatly organizes any multime-
dia devices that an application can use
into what is known as a capability tree.
The tree not only includes the devices
themselves, but also some additional
information on their capabilities. The
mlquery tool included with the OpenML
SDK [6] lists the usable devices on the
current machine. Figure 4 shows an ex-
ample.

To locate a device in the capability tree
to match the planned operation, the ap-
plication climbs around the tree until it
finds a suitable candidate. The entry
point is always the top layer (i.e., the
root of the tree), which represents the
whole computer system. My sample
code looks for an audio playback device:

MLint64 devId=0;
mluFindDeviceByNameU
(ML_SYSTEM_LOCALHOST, U
"audio device", &devId);

After this call, the matching physical
device is returned in the variable devId;

ML_SYSTEM_LOCALHOST is the label
for the whole system and, thus, the ca-
pability tree entry point.

Jacks
Unfortunately, developers can’t just pass
audio to the sound card without worry-
ing about the consequences. What hap-
pens if the sound card has multiple out-
puts, for example? To resolve possible
conflict, each physical device has one
or more logical devices, known as jacks.
They represent the places you could
send video or audio data, or where they

could enter the system. An example of a
jack for a sound card could be a micro-
phone or audio output. Thus, the jack
represents the interface the application
will use for system I/ O.

Incidentally, a jack need not be
mapped one-to-one with a physical in-
terface: Because it is a logical device, a
jack can represent multiple physical de-
vices (as in multi-channel sound); con-
versely, multiple jacks can be mapped to
a single physical interface. In my exam-
ple, I need a jack to output the audio
material. The following code simply
finds the first available output that ful-
fills this condition.

MLint64 jackId=0;
mluFindFirstOutputJackU
(devId, &jackId);

The next thing I need is a way of feeding
the audio (or video) material to the jack
and, from there, out of the system. In
OpenML-speak this is known as a path,
and it connects the buffer with the audio
data in main memory to the jack (Figure
5). OpenML distinguishes between
• input paths, which supply a data

stream and are stored in a buffer, and

Figure 3: OpenML comprises four components, including the extended OpenGL, the MLdc

device control, and a synchronization layer. The core component, ML, uses device modules to

access the physical hardware.

Au
di

o
De

vi
ce

 M
od

ul
e

... ...

Vi
de

o
De

vi
ce

 M
od

ul
e

ML

OpenML-APIs

Mldc

Video
Device
Control

OpenGL + ExtensionsX11

Application

Graphics Card

Synchronization

Audio and Video Devices

Figure 2: OpenML is based on three existing libraries, all of which originated with SGI. The

synchronization components are new.

SGI DM SDK

Xdc Extensions für X11

OpenGL Extensions

Synchronization
(UST/MSC)

OpenMLKNOW-HOW

56 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

• output paths, which accept a memory
buffer from the application and pass
the content on to the jack.

In my example, the following code uses
a path to connect to the output jack:

MLint64 pathId=0;
mluFindPathToJackU
(jackId, &pathId);

After this, the next two lines open the
output path:

MLopenid openPath;
mlOpenU
(pathId, NULL, &openPath);

This gives the application direct access
to the hardware. At the same time, the
function allocates the system resources
required for subsequent operations. The
second parameter in mlOpen() is used to
pass in configuration parameters; in this
case, I will use the defaults.

Mail Service
After establishing a connection to the
output device, I have to take care of a
couple of settings. The audio data I want
to output were recorded in mono at a
frequency of 44,100Hz. The developer
needs to pass these settings on to the
output device.

In OpenML, applications use messages
to communicate with devices. Messages
comprise a list of parameters and pairs
of values stored in a type MLpv array.
The header files define the parameters
and a couple of values in the form of
macros. The end of the list is designated
by the ML_END tag.

For my example, I first need a new
message with the settings shown in List-

ing 1 (16 bit,
44,100Hz, mono, with
a gain of -12dB).

Now I’ll send the
message down the
path to the jack:

mlSetControlsU
(openPath,U
controls);

which is a blocking
call. The function will not return until
the settings have been delivered or an
error occurs.

Mass Migration
Now, I’ll send the audio data to the de-
vice. To do this, again, I need to bundle
the data into a message and send the
message down the path to the device. In
my example, the ourAudioBuffer pointer
marks the start of the buffer with the
audio data. The SDK reference [6] tells
how the data, which I will reference as
ourAudioBuffer, has to be organized and
formatted in memory. For stereo, the
sample for the left channel is always fol-
lowed by the sample for the right chan-
nel (interleaved).

As the programmer, I am responsible
for creating and filling the buffer and,
thus, equally responsible for honoring
the conventions. If I get everything right,
I can bundle the audio data into a mes-
sage behind the ourAudioBuffer pointer
(Listing 2).

Finally, I just send the message down
the path:

mlSendBuffers(openPath, msg);

This sends the message to the path’s
mailbox; another step
is required to empty the
box:

mlBeginTransferU
(openPath);

This line finally tells
OpenML to open the
box and send the mes-
sages in order of arrival
to the device. The use
of a queue might seem
redundant at first, but
the presence of a queue
does give me a handle

on compensating for latency or drop-
outs, such as the ones the operating
system regularly causes.

Restful Slumber
Because mlBeginTransfer() returns with-
out waiting for output to complete, the
application can do a couple of other use-
ful things in the meantime. But beware:
OpenML does not use locking, so you
will not want to access any buffers you
have sent. To make sure this doesn’t
happen, my sample application just goes
to sleep(5).

After processing the data, OpenML
sends a success message to the appli-
cation’s mailbox, and the applica-
tion opens the message by calling
mlReceiveMessage():

01 MLpv controls[5]; /*
Message containing 5 values */

02 MLreal64 gain = -12; /* Gain
*/

03

04 controls[0].param = ML_AUDIO_
FORMAT_INT32;

05 controls[0].value.int32 = ML_
FORMAT_S16;

06 controls[1].param = ML_AUDIO_
CHANNELS_INT32;

07 controls[1].value.int32 = 1;

08 controls[2].param = ML_AUDIO_
GAINS_REAL64_ARRAY;

09 controls[2].value.pReal64 =
&gain;

10 controls[2].length = 1;

11 controls[3].param = ML_AUDIO_
SAMPLE_RATE_REAL64;

12 controls[3].value.real64 =
44100.0;

13 controls[4].param = ML_END;

Listing 1: Audio Output

Figure 5: The multimedia application stores the media data in a

buffer, which is passed to the jack along the path. The jack is the

interface into or out of the computer system.

JackPathBuffer

Application

Figure 4: The mlquery tool outputs a list of multimedia devices

on the system. It has found an OSS-compatible sound card in

this example.

KNOW-HOWOpenML

57ISSUE 82 SEPTEMBER 2007W W W. L I N U X- M A G A Z I N E . C O M

mlReceiveMessage(openPath, U
&messageType, replyMessage);
if(messageType==U
ML_BUFFERS_COMPLETE)
 printf("Data transmitted!\n");

This mechanism also gives programmers
access to any error messages. Addition-
ally, every function returns an MLstatus
type value, although this might not work
for asynchronous transmissions, as in
my example.

Freedom
To clean up, I need to close the path and
release the jack:

mlClose(openPath);

The box titled “Stuffed Sausage” gives
tips on neat handling for larger volumes
of data.

Pipes and Transcoders
Besides jacks, OpenML also uses trans-
coders. A transcoder is a logical device
that accepts data from a buffer, then
performs an operation with the data and
pushes the results out into another
buffer (Figure 6).

Transcoders are mainly used to push
media data back and forth between
jacks. For example, a jack can supply
data from a video camera; then feed the
data through a matching transcoder,
where it is unpacked; and finally feed
the data to another jack to be displayed
on a preview monitor.

Transcoders can be implemented as
hardware (e.g., to calculate real-time
video effects) or as software (e.g.,
MPEG2 decoders).

Whereas a jack is fed with data and
messages by a path, a pipe handles the

task of feeding data to a transcoder. A
transcoder will always need at least one
input pipe to feed it with input data, as
well as one output pipe through which it
delivers the results.

Conclusions
In a style worthy of OpenGL, OpenML
has what it takes to become a cross-plat-
form standard for multimedia applica-

tions. The OpenML library has a reputa-
tion of being a competitor to Microsoft’s
DirectX, and this reputation is justified.
What OpenML lacks is more support
from hardware and software vendors.

Despite its promising start, OpenML
can’t be regarded as a panacea. The
OpenML library lacks functions for
important tasks such as streaming over
networks, and OpenML still doesn't
come with support for special input de-
vices. The list of unsupported devices in-
cludes more than just the gamepads and
wheels that gamers rely on. Also unsup-
ported are the kinds of controls that mul-
timedia terminals typically use. As
OpenML gains attention in the develop-
ment community, we'll hope that hard-
ware vendors will step up to provide
better support. ■

[1] OpenML:
http:// www. khronos. org/ openml

[2] SGI Free Software License C:
http:// oss. sgi. com/ projects/ FreeC

[3] Jahshaka, an OpenML-based video
effects program:
http:// www. jahshaka. org/

[4] Information on PAL:
http:// en. wikipedia. org/ wiki/ PAL

[5] OpenML Media Library Software
Development Kit Beginner’s Guide:
http:// techpubs. sgi. com/ library/ tpl/
cgi-bin/ download. cgi?coll=0650&db=
bks&docnumber=007-4376-001

[6] OpenML SDK:
http:// sourceforge. net/ projects/ oml-ri

INFO

If you need to send a larger volume of
data or a large number of messages to a
jack, your best approach is to first create
a small buffer, then play back the buffer
and wait for the wait handle to be re-
turned:

MLwaitable pathWaitHandle;

mlGetReceiveWaitHandle§§

(openPath, &pathWaitHandle);

Then you just wait for your number to
be called:

fd_set fdset;

FD_ZERO(&fdset);

FD_SET(pathWaitHandle, &fdset);

select(pathWaitHandle+1, §§

&fdset, NULL, NULL, NULL);

After this, you wait again for the corre-
sponding acknowledge message to
arrive. Then, you fill up the buffer with
the next blob of data – images or the
next audio track, for example – and
re-use the old envelope to send it back:

mlSendBuffers§§

(openPath, replyMessage);

Stuffed Sausage

Figure 6: A path through OpenML: The data stream flows into a buffer. A pipe picks up the

data and passes it through a transcoder, which uses a pipe to pump the results into a buffer in

main memory.

Jack Path JackPathBuffer Buffer

Source
Pipe

Destination
Pipe

Transcoder

Application

01 MLpv msg[2];

02 msg[0].param = ML_AUDIO_
BUFFER_POINTER;

03 msg[0].value.pByte =
ourAudioBuffer;

04 msg[0].length =
sizeof(ourAudioBuffer);

05 msg[1].param = ML_AUDIO_UST_
INT64; /* timestamp */

06 msg[2].param = ML_END;

Listing 2: Bundling the
Audio Data

OpenMLKNOW-HOW

58 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

