
72

Storing emails on an IMAP server
instead of on a local PC has the
advantage of providing access to

information you need, no matter where
you are when you need it. But if you use
Instant Messaging in addition to email,
the exchange of information is lost as
soon as you finish chatting.

Many messaging clients, such as the
ubiquitous Gaim, have a logging feature
to help you solve this problem. The cli-
ent records your messages on disk, but
often you’ll find yourself miles away
from home when you need that vital
URL that a friend IMed you recently.

Security Risks
Of course, there is nothing to stop you
from saving your logfiles on a server
with public access and adding all kinds

of search functions into the bargain.
However, this raises the problem of pro-
tecting your data against unauthorized
access. Although no one in his right
mind would exchange confidential infor-
mation over insecure chat channels, it is
important to keep private conversations
secure. If your new server happens to
have a security hole, it would be embar-
rassing to see private chats exposed.

Because there is a tried and trusted,
and relatively secure, place to store
email – the IMAP server – it makes sense
to deposit the log files from your mes-
sage client there.

Taking Minutes
To tell Gaim to log all conversations, you
can easily use the Preferences Logging
menu. I opted for the Plain format (see

Figure 1) because I’m a dinosaur and
still use Pine as my email client. I actu-
ally dislike HTML emails because of
their inherent security problems and pre-
fer plain text. The radio buttons Log all
instant messages and Log all chats con-
trol logging of normal conversations and
group chats. When you enable these fea-
tures, Gaim automatically creates a sepa-
rate text file for each conversation in
~/.gaim/logs. Gaim 1.x versions use a
path of Provider/Sender/Receiver/*.txt for
this, so if the local user mikeschilli used
the Yahoo Messenger protocol just be-
fore 10:00 on March 28, 2007, to talk to
randomperlhacker, the local file would
be stored as ~/.gaim/logs/yahoo/mike-
schilli/randomperlhacker/2007-03-28.
095243.txt. In Figure 2, you can see the
conversation and, in Figure 3, the logfile
content.

Chat Subjects
The gaim2imap daemon (Listing 1) calls
the update() function to process any
new logfiles it has found and then goes

Are you interested in storing, organizing, and searching instant

messaging conversations on your IMAP server? The Perl script in

this month’s column can help you do just that. BY MIKE SCHILLI

Gaim play

CHAT COLLECTOR

Perl: IMAP Chat LogPROGRAMMING

72 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

73

back to sleep for the preset time interval.
A setting of one hour (3600 seconds) is
defined for this in the $sleep variable.

Instead of sending unprocessed log-
files as individual email messages to the
IMAP server, the daemon first adds some
meta information. The sender (From:) is
set to the name of the other party, and
a pseudo-domain of @gaim is added to
prevent the IMAP server and the email
client you use to read the message later
from complaining. The email date is set
to the start point of the conversation and
formatted to comply with RFC822 by the
DateTime::Format::Mail module. It
would be helpful to show the most im-
portant topics of the conversation in the
subject line of the email. For the chat in
Figure 2, these topics could be “charac-
ters, perl, word, split, know, bit”. Of
course, topic extraction is a science unto
itself, but gaim2imap is quite happy
with just a couple of simple tricks, and
this helps you achieve usable results.

Stopwords
First of all, the chat_process() function
attempts to identify the predominant
language in the conversation. If you talk
to international partners, you might use
a mix of English, Spanish, or some other
languages. The Text::Language::Guess
CPAN module makes fairly intelligent
guesses if the options are restricted to
just two or three languages.

Then chat_process() attempts to iden-
tify stopwords [2] in the text; these are
words that don’t really tell much about

the topic of the conversation, but
are crucial to understanding the
language. Articles (a, the), per-
sonal pronouns (I, you, he), or
conjunctions (and, or) are a few
examples of stopwords. For ex-
ample, if a search engine receives
a query such as By the way,
where is San Francisco?, it will
just ditch everything apart from
the name of the city, and look for
San Francisco in its index.

The gaim2imap script elimi-
nates stopwords via the Lingua::
StopWords CPAN module. Just
specify a language, and then the
module returns a reference to a
hash whose keys are a collection of all
the stopwords known to the module for
this particular language. The script addi-
tionally defines a list of frequently en-
countered words from the list in $im_
stopwords in line 27; you can normally
assume that these words will not con-
tribute much to the content.

To filter out the most important topics,
the script uses a kind of home-grown
 approach: It counts how often specific
words occur, weights them by frequency,
and adds three extra points to long
words (with more than six letters). If
you like, you can integrate a more so-
phisticated approach; Yahoo, my em-
ployer, offers a Web API [3] for extract-
ing topics from English texts.

Lighting up Links
If an IM logfile contains one or multiple

URLs, it might
prove particularly
valuable. gaim2
imap uses the URI::
Find CPAN module
to discover URLs in
the clear text of the
chat. The construc-
tor expects a call-
back function as an
argument that gets
called for every
URL found. In
gaim2imap, the
callback function
returns an empty
string to have URLs
eliminated from the
text before it goes
to the term-extrac-
tion stage. If the

number of identified URLs is greater
than 0, a *L* (for Link) is added at the
start of the future email’s subject line.
With this in place, you can quickly see
within your email client which logfiles,
from a list of several, contain critical
links. To make sure that the logs are as
easy to read as emails, the body text of
individual chat messages is formatted to
a line length of 70 characters and justi-
fied with the Text::Wrap module and its
fill() function in line 150. The script
modifies $Text::Wrap::columns to ac-
complish this.

The chat_process() function returns a
total of three values: the suggested sub-
ject line for the outgoing mail, the newly
formatted text, and the start point of the
chat session in Unix seconds.

The imap_add() function in line 220
creates a mail header from this and uses
the IMAP::Client CPAN module’s ap-
pend() method to drop the message into
the IMAP server’s im_mailbox folder.
Check out the Installation section to dis-
cover how to set up this folder on the
IMAP server.

Connecting
IMAP::Client is first switched to Raise-
Error mode by calling onfail('ABORT').
Any errors that occur will throw an ex-
ception in this mode, immediately caus-
ing the script to quit. This way, you
don’t need to check the return values
of the individual methods the module
 offers. If you prefer the daemon not
to quit, you can use eval to catch the
 exceptions and react to them.

The connect() method in line 77 estab-
lishes the connection to the IMAP server.
In this script, localhost is the server

Gaim play

CHAT COLLECTOR

PROGRAMMINGPerl: IMAP Chat Log

73ISSUE 82 SEPTEMBER 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: Gaim’s Preferences menu lets you configure how you log

chat sessions.

Figure 2: A conversation with Gaim …

because the Dovecot IMAP server is run-
ning on my Linux desktop. But connect()
could just as easily contact any host on
the Internet. Line 83 calls authenticate()

and passes in the user-
name and the pass-
word for the Unix
user. The latter is col-
lected by gaim2imap
at program startup.
Password input is han-
dled by the password_
read() function in line

42, and it comes from the bottomless
treasure trove of the Sysadm::Install
CPAN module.

The Gaim::Log::Finder and Gaim::

Log::Parser CPAN modules find and
parse the Gaim logs, removing the need
to manually traverse directory hierar-
chies and extract dates and messages
from each file encountered. The CPAN
modules provide methods for getting
sender and receiver information, dates,
and the content of a chat session. The
chat_process() function uses $parser->
next_message() to iterate over all
exchanged messages of a logfile, each re-
turned as a Gaim::Log::Message object.
The object features date(), from(), to(),

Perl: IMAP Chat LogPROGRAMMING

74 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

001 #!/usr/bin/perl -w
002 #############################
003 # gaim2imap - IMAP chat logs
004 # Mike Schilli, 2007
005 # (m@perlmeister.com)
006 #############################
007 use strict;
008 use Gaim::Log::Parser 0.04;
009 use Gaim::Log::Finder;
010 use Sysadm::Install 0.23
011 qw(:all);
012 use Lingua::StopWords;
013 use Text::Language::Guess;
014 use Log::Log4perl qw(:easy);
015 use Text::Wrap
016 qw(fill $columns);
017 use URI::Find;
018 use IMAP::Client;
019 use DateTime::Format::Mail;
020
 021 my $mailbox = "im_mailbox";
022 my $tzone =
023 "America/Los_Angeles";
024 my $min_age = 3600;
025 my $sleep = 3600;
026
 027 my $im_stopwords =
028 map { $_ => 1 } qw(maybe
029 thanks thx doesn hey put
030 already said say would can
031 could haha hehe see well
032 think like heh now many lol
033 doh);
034
 035 Log::Log4perl->easy_init({
036 level => $DEBUG,
037 category => "main",
038 file =>
039 ">>$ENV{HOME}/.gaim2imap.log"
040 });
041
 042 my $PW = password_read(

043 "password: ");
044
 045 my $pid = fork();
046 die "fork failed"
047 if !defined $pid;
048 exit 0 if $pid;
049
 050 dbmopen my %SEEN,
051 "$ENV{HOME}/.gaim/.seen",
052 0644
053 or LOGDIE
054 "Cannot open dbm file ($!)";
055
 056 $SIG{TERM} = sub {
057 INFO "Exiting";
058 dbmclose %SEEN;
059 exit 0;
060 };
061
 062 while (1) {
063 update();
064 INFO "Sleeping $sleep secs";
065 sleep $sleep;
066 }
067
 068 #############################
069 sub update {
070 #############################
071 DEBUG "Connecting to IMAP";
072
 073 my $imap =
074 IMAP::Client()->new();
075
 076 $imap->onfail('ABORT');
077 $imap->connect(
078 PeerAddr => 'localhost',
079 ConnectMethod => 'PLAIN'
080);
081
 082 my $u = getpwuid $>;
083 $imap->authenticate($u,$PW);
084

 085 my $finder =
086 Gaim::Log::Finder->new(
087 callback => sub {
088 my ($self, $file,
089 $protocol, $from, $to)
090 = @_;
091
 092 return 1 if $from eq $to;
093
 094 my $mtime =
095 (stat $file)[9];
096 my $age = time() - $mtime;
097
 098 return 1
099 if $SEEN{$file}
100 and $SEEN{$file} ==
101 $mtime;
102
 103 if ($age < $min_age) {
104 INFO "$file: Too ",
105 " recent ($age)";
106 return 1;
107 }
108
 109 $SEEN{$file} = $mtime;
110 INFO "Processing log ",
111 "file: $file";
112 my ($subject, $formatted,
113 $epoch)
114 = chat_process($file);
115
 116 imap_add($imap,
117 $mailbox, $epoch,
118 "$to\@gaim", "",
119 $subject, $formatted);
120 });
121
 122 $finder->find();
123 }
124
 125 #############################
126 sub chat_process {

127 #############################
128 my ($file) = @_;
129
 130 my $parser =
131 Gaim::Log::Parser->new(
132 file => $file);
133
 134 # Search+delete URLs
135 my $urifind =
136 URI::Find->new(sub { "" });
137
 138 my $text = "";
139 my $formatted = "";
140 my $urifound;
141 $Text::Wrap::columns = 70;
142
 143 while (my $m =
144 $parser->next_message()) {
145
 146 my $content =
147 $m->content();
148 $content =~ s/\n+/ /g;
149
 150 $formatted .= fill(
151 "", " ",
152 nice_time($m->date())
153 . " "
154 . $m->from() . ": "
155 . $content
156) . "\n\n";
157
 158 $urifound =
159 $urifind->find(
160 \$content);
161 $text .= " " . $content;
162 }
163
 164 my $guesser =
165 Text::Language::Guess->new(
166 languages => ['en', 'es']
167);
168

 169 my $lang = $guesser
170 ->language_guess_string(
171 $text);
172
 173 $lang = 'en' unless $lang;
174
 175 DEBUG "Guessed: $lang\n";
176
 177 my $stopwords =
178 Lingua::StopWords::

getStopWords(
179 $lang);
180
 181 my %words;
182
 183 while (
184 $text =~ /\b(\w+)\b/g) {
185
 186 my $word = lc($1);
187 next
188 if $stopwords->{$word};
189 next if $word =~ /^\d+$/;
190 next if length($word) <= 2;
191 next if exists
192 $im_stopwords{$word};
193 $words{$word}++;
194 $words{$word} += 3
195 if length $word > 6;
196 }
197
 198 my @weighted_words = sort {
199 $words{$b} <=> $words{$a}
200 } keys %words;
201
 202 my $subj =
203 ($urifound ? '*L*' : "");
204 my $char = "";
205
 206 while (@weighted_words
207 and length($subj) + length(
208 $char . $weighted_words[0]
209) <= 70) {

210 $subj .= $char
211 . shift @weighted_words;
212 $char = ", ";
213 }
214
 215 return ($subj, $formatted,
216 $parser->{dt}->epoch());
217 }
218
 219 #############################
220 sub imap_add {
221 #############################
222 my ($imap, $mailbox,
223 $date, $from, $to,
224 $subject, $text) = @_;
225
 226 $date = DateTime::Format::

Mail
227 ->format_datetime(
228 DateTime->from_epoch(
229 epoch => $date,
230 time_zone => $tzone
231));
232
 233 my $message =
234 "Date: $date\n"
235 . "From: $from\n"
236 . "To: $to\n"
237 . "Subject: "
238 . "$subject\n\n$text";
239
 240 my $fl =
241 $imap->buildflaglist();
242
 243 $imap->append($mailbox,
244 $message, $fl);
245 }

 Listing 1: gaim2imap Listing 1: gaim2imap

Figure 3: … and the matching logfile.

and content() methods for accessing the
date, the conversation partners, and the
text of each message, respectively.

To tell gaim2imap to disappear into
the background when the user enters the
password at startup, line 45 forks a child
process. The parent process disappears
without much ado, and the user sees
the command-line's prompt return. The
child process just goes on running. If the
admin later kills the daemon by calling
kill with the appropriate process ID,
gaim2imap will try to save a persistent

hash with seen log files with dbmclose
before calling exit and quitting. The
global %SIG hash uses a $SIG{TERM}
entry to define this behavior.

An IM session could go on for several
hours, but Gaim will keep on adding
messages to an existing logfile. Gaim
will not create a new file until the com-
munication dialog is closed and a new
message exchange starts.

The daemon that generates emails
from the logfiles defines an hour of inac-
tivity as the threshold. After this, the file

is converted to an email and tagged as
processed. If the session was still active
at this time and if Gaim later appends
a new message, the daemon will notice
the change; the daemon stores the last
modification time for each file it pro-
cesses and stores this value in %SEEN, a
persistent hash that is linked to a file by
dbmopen. To avoid loss of data in this
fairly rare scenario, the daemon simply
reprocesses the file, producing a dupli-
cate rather than giving up on potentially
valuable content.

PROGRAMMINGPerl: IMAP Chat Log

75ISSUE 82 SEPTEMBER 2007W W W. L I N U X- M A G A Z I N E . C O M

001 #!/usr/bin/perl -w
002 #############################
003 # gaim2imap - IMAP chat logs
004 # Mike Schilli, 2007
005 # (m@perlmeister.com)
006 #############################
007 use strict;
008 use Gaim::Log::Parser 0.04;
009 use Gaim::Log::Finder;
010 use Sysadm::Install 0.23
011 qw(:all);
012 use Lingua::StopWords;
013 use Text::Language::Guess;
014 use Log::Log4perl qw(:easy);
015 use Text::Wrap
016 qw(fill $columns);
017 use URI::Find;
018 use IMAP::Client;
019 use DateTime::Format::Mail;
020
 021 my $mailbox = "im_mailbox";
022 my $tzone =
023 "America/Los_Angeles";
024 my $min_age = 3600;
025 my $sleep = 3600;
026
 027 my $im_stopwords =
028 map { $_ => 1 } qw(maybe
029 thanks thx doesn hey put
030 already said say would can
031 could haha hehe see well
032 think like heh now many lol
033 doh);
034
 035 Log::Log4perl->easy_init({
036 level => $DEBUG,
037 category => "main",
038 file =>
039 ">>$ENV{HOME}/.gaim2imap.log"
040 });
041
 042 my $PW = password_read(

043 "password: ");
044
 045 my $pid = fork();
046 die "fork failed"
047 if !defined $pid;
048 exit 0 if $pid;
049
 050 dbmopen my %SEEN,
051 "$ENV{HOME}/.gaim/.seen",
052 0644
053 or LOGDIE
054 "Cannot open dbm file ($!)";
055
 056 $SIG{TERM} = sub {
057 INFO "Exiting";
058 dbmclose %SEEN;
059 exit 0;
060 };
061
 062 while (1) {
063 update();
064 INFO "Sleeping $sleep secs";
065 sleep $sleep;
066 }
067
 068 #############################
069 sub update {
070 #############################
071 DEBUG "Connecting to IMAP";
072
 073 my $imap =
074 IMAP::Client()->new();
075
 076 $imap->onfail('ABORT');
077 $imap->connect(
078 PeerAddr => 'localhost',
079 ConnectMethod => 'PLAIN'
080);
081
 082 my $u = getpwuid $>;
083 $imap->authenticate($u,$PW);
084

 085 my $finder =
086 Gaim::Log::Finder->new(
087 callback => sub {
088 my ($self, $file,
089 $protocol, $from, $to)
090 = @_;
091
 092 return 1 if $from eq $to;
093
 094 my $mtime =
095 (stat $file)[9];
096 my $age = time() - $mtime;
097
 098 return 1
099 if $SEEN{$file}
100 and $SEEN{$file} ==
101 $mtime;
102
 103 if ($age < $min_age) {
104 INFO "$file: Too ",
105 " recent ($age)";
106 return 1;
107 }
108
 109 $SEEN{$file} = $mtime;
110 INFO "Processing log ",
111 "file: $file";
112 my ($subject, $formatted,
113 $epoch)
114 = chat_process($file);
115
 116 imap_add($imap,
117 $mailbox, $epoch,
118 "$to\@gaim", "",
119 $subject, $formatted);
120 });
121
 122 $finder->find();
123 }
124
 125 #############################
126 sub chat_process {

127 #############################
128 my ($file) = @_;
129
 130 my $parser =
131 Gaim::Log::Parser->new(
132 file => $file);
133
 134 # Search+delete URLs
135 my $urifind =
136 URI::Find->new(sub { "" });
137
 138 my $text = "";
139 my $formatted = "";
140 my $urifound;
141 $Text::Wrap::columns = 70;
142
 143 while (my $m =
144 $parser->next_message()) {
145
 146 my $content =
147 $m->content();
148 $content =~ s/\n+/ /g;
149
 150 $formatted .= fill(
151 "", " ",
152 nice_time($m->date())
153 . " "
154 . $m->from() . ": "
155 . $content
156) . "\n\n";
157
 158 $urifound =
159 $urifind->find(
160 \$content);
161 $text .= " " . $content;
162 }
163
 164 my $guesser =
165 Text::Language::Guess->new(
166 languages => ['en', 'es']
167);
168

 169 my $lang = $guesser
170 ->language_guess_string(
171 $text);
172
 173 $lang = 'en' unless $lang;
174
 175 DEBUG "Guessed: $lang\n";
176
 177 my $stopwords =
178 Lingua::StopWords::

getStopWords(
179 $lang);
180
 181 my %words;
182
 183 while (
184 $text =~ /\b(\w+)\b/g) {
185
 186 my $word = lc($1);
187 next
188 if $stopwords->{$word};
189 next if $word =~ /^\d+$/;
190 next if length($word) <= 2;
191 next if exists
192 $im_stopwords{$word};
193 $words{$word}++;
194 $words{$word} += 3
195 if length $word > 6;
196 }
197
 198 my @weighted_words = sort {
199 $words{$b} <=> $words{$a}
200 } keys %words;
201
 202 my $subj =
203 ($urifound ? '*L*' : "");
204 my $char = "";
205
 206 while (@weighted_words
207 and length($subj) + length(
208 $char . $weighted_words[0]
209) <= 70) {

210 $subj .= $char
211 . shift @weighted_words;
212 $char = ", ";
213 }
214
 215 return ($subj, $formatted,
216 $parser->{dt}->epoch());
217 }
218
 219 #############################
220 sub imap_add {
221 #############################
222 my ($imap, $mailbox,
223 $date, $from, $to,
224 $subject, $text) = @_;
225
 226 $date = DateTime::Format::

Mail
227 ->format_datetime(
228 DateTime->from_epoch(
229 epoch => $date,
230 time_zone => $tzone
231));
232
 233 my $message =
234 "Date: $date\n"
235 . "From: $from\n"
236 . "To: $to\n"
237 . "Subject: "
238 . "$subject\n\n$text";
239
 240 my $fl =
241 $imap->buildflaglist();
242
 243 $imap->append($mailbox,
244 $message, $fl);
245 }

 Listing 1: gaim2imap Listing 1: gaim2imap

Most email clients support the IMAP
protocol. If you want an easy to install
IMAP server, I recommend Dovecot [4].
But whether you go for Cyrus, UW
IMAP, or Dovecot, the mbsetup script
(Listing 2) will create a new mailbox
for chat email on your IMAP server.

If the debug level is set to 0x01, as in
mbsetup, IMAP::Client will additionally

output the commands exchanged be-
tween the client and the server. This pro-
vides an excellent opportunity to study
the quirky IMAP protocol, which assigns
a unique number to each command and
uses the same number for the response.
This means that the server can start talk-
ing in between exchanges, for example,
after an email lands in a mailbox that
the client has signed up for. Thanks to
the prepended number, the client can
clearly distinguish between messages
initiated by the server and messages re-
sponding to requests.

Installation
If the IMAP server uses SSL to communi-
cate (a must on the Internet and advis-

able on Intranets),
you need to set the
ConnectMethod
parameter to SSL.
PLAIN will work if
the IMAP server has
disabled SSL.

The CPAN mod-
ules used in
gaim2imap require a
couple of dependen-
cies that a CPAN

shell will automatically
resolve. Line 166 of
gaim2imap sets the lan-
guages to detect to English
and Spanish (en, es). To
reflect the languages you
use, change the content of
this anonymous hash.

Time Zones
Gaim logs don’t have the
local time zone embedded,
so it is up to the applica-
tion parsing them to trans-
form the time values to
local time.

The $tzone variable in
line 22 defines it, and if
you don’t happen to live
in the time zone specified,
you need to adapt it to
your local setting.

When you start the
gaim2imap daemon, you
are prompted to enter the
password the daemon can
use to log on to the IMAP
server with the user ID of
the running process. By

watching the logfile, you can check what
the daemon is doing at any given time
and how hard this automatic archivist is
actually working.

If everything turns out as expected,
the im_mailbox folder on the IMAP
server should start to fill up with al-
ready-logged IM conversations after
launching the program. While the dae-
mon is active, it will pick up any chat
sessions that take place. If the user is
searching for information from a chat
that happened the day before or many
years ago, the email client provides
convenient functions to search in the
archive. Just think how easy it could
be to find that elusive YouTube link a co-
worker told you about this morning. ■

Perl: IMAP Chat LogPROGRAMMING

76 ISSUE 82 SEPTEMBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

Figure 4: The email client sees the completed messaging sessions

on the IMAP server. The subject line in session five includes an *L*

to indicate that a URL was exchanged.

Figure 5: The chat session text is available if the email

client displays the mail text.

Figure 6: The client and server communicate according

to the IMAP protocol. Each request is assigned a unique

numeric ID, which is sent again with the response.

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 82

[2] Stopwords:
http:// en. wikipedia. org/ wiki/ Stopword

[3] Yahoo Term Extraction API:
http:// developer. yahoo. com/ search/
content/ V1/ termExtraction. html

[4] Dovecot, the secure IMAP server:
http:// www. dovecot. org

INFO

01 #!/usr/bin/perl

02 use strict;

03 use IMAP::Client;

04 use Sysadm::Install 0.23

05 qw(:all);

06

 07 my $mailbox = "im_mailbox";

08

 09 my $imap =

10 new IMAP::Client();

11 $imap->onfail('ABORT');

12 $imap->errorstyle('STACK');

13 $imap->debuglevel(0x01);

14

 15 $imap->connect(

16 PeerAddr => 'localhost',

17 ConnectMethod => 'PLAIN'

18)

19 or die "auth failure "

20 . $imap->error;

21

 22 my $u = getpwuid $>;

23 my $pw =

24 password_read("passwd: ");

25 $imap->authenticate($u, $pw);

26

 27 $imap->onfail('ERROR');

28 $imap->delete($mailbox);

29 $imap->onfail('ABORT');

30

 31 $imap->create($mailbox);

Listing 2: mbsetup

