
ple who will actually be using auditd.
For example, by default on Red Hat and
SUSE Linux, if the logging disk (or other
media you are logging to) becomes full,
the daemon will be suspended. That
means auditd will continue to run, but
no logging will take place until an ad-
ministrator fixes the situation.

Obviously, in a high-security setting,
this setup would allow an attacker to
fill the logfiles until the logging space is
exhausted and then avoid further audit-
ing. For secure environments (e.g., Con-
trolled Access Protection Profiles,
CAPP), you will generally need to spec-
ify that the system halts or panics when
logging isn’t possible. Some examples
of the directives needed for this are:

disk_error_action=halt

disk_full_action=halt

overflow_action=halt

Some ways to prevent the logfiles from
filling up are, of course, to give them a
lot of space, to rotate them and move
them off the system securely, or to log
events remotely. However, remember,
any network issues could cause the sys-
tem to stop logging, causing it to halt or
panic.

As always, there are trade-offs to be
made, but if you are required by law or
regulations to handle this issue, then ar-
chitecting reliable logging is a must to
keep your systems available.

Configuring auditd Rules
You can configure auditd rules in two
ways, either by using the auditctl pro-
gram or by placing the rules into /etc/
audit/audit.rules so that they are
loaded when auditd starts. The exact
syntax of the rules is the same for the
auditctl program and for the config

A
certain subset of Linux users is
extremely paranoid about secu-
rity. These are folks that want to
see every system call and file ac-

cess that a program makes and want to
ensure that any access to specific data
files is logged securely. The auditd sub-
system [1] provides all these capabilities
and more.

Why auditd and Not syslog?
Why not just use syslog/​rsyslog like eve-
ryone else? One of the biggest differ-
ences between auditd and a syslog log-
ger is that auditd runs in kernel space,
and syslog runs in user space. For a sys-
log-style daemon, you can’t log any
events until syslog is running. That
means you could lose startup events. For
example, if an attacker were to modify
the startup scripts for a service that
starts before syslog, they would be able
to avoid any logging of their actions. Ad-
ditionally, syslog can lose messages and
events, and nothing much will happen.
However, you can configure auditd to
stop the system if an error occurs or if
messages are unable to be logged locally
or remotely.

Enabling auditd
Getting audit running is easy; getting au-
ditd running securely, however, requires
a few extra steps. The first and most ob-
vious step is to enable auditd with the
command:

chkconfig auditd on

But wait, what happens if an attacker
manages to elevate privileges and get
root? They could disable auditd and then
do whatever they wanted without leav-
ing an audit trail. Fortunately, the auditd
people thought of this, and the auditctl
program has two relevant options: ‑e
and ‑f. The -e option allows you to turn
off auditing with 0 and turn it on with 1;
using 2 allows you to lock the configura-
tion, meaning that no rules can be
added, removed, or modified, and au-
ditd cannot be disabled. If you use this
option, put ‑e 2 as the last option in the
/etc/audit/audit.rules file.

The ‑f option allows you to configure
how you want the kernel to handle criti-
cal errors, such as a failure to log events.
Setting this option to 0 results in a silent
failure, meaning the kernel will ignore
the problem. Setting ‑f to 1 will print the
error, and 2 will cause the kernel to
panic the system – so, rather than failing
to log any events, the system will com-
mit the equivalent of digital suicide. You
should only use the ‑e 2 option once you
have established the rules you need and
use the ‑f 2 option only if you require a
really secure environment.

Finally, if you want to log events that
have occurred before auditd was started,
you can pass the audit=1 option on the
boot command line. This will cause
events to be buffered in kernel memory,
and then, once auditd is started, the
events can be written to the logs. If you
use this option, make sure your rules do
not log so much data that it can’t be
buffered properly, or else make sure au-
ditd is started early enough for events to
be logged normally.

Configuring auditd
The defaults for auditd are generally not
considered secure enough for most peo-

Configuring and using auditd

Super Secure
The auditd tool can provide system logging capabilities to

satisfy even the most paranoid users. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt Seifried

62

Features
Security Lessons: auditd

January 2013	 Issue 146	 linux-magazine.com | Linuxpromagazine.com	

file – much like iptables and most other
daemons. As with SELinux, things start
to get complicated at this point. You can
create rules that watch files, directories,
users, process ID, parent process ID, SE-
Linux objects (including user, role, type,
sensitivity, clearance, etc.), and you can
report on file and directory access and
system calls – basically anything a pro-
gram does.

These rules can contain up to 64 fields
and use operators such as equal to, not
equal to, less than, greater than, and so
on. For example, you can apply rules to
all UID’s greater than 500, or not equal
to root. Rules can look for arguments
sent to system calls or for the exit value
of a system call, so you can easily log at-
tempts to use a system call that shouldn’t
be used. Rules can also look at UID/GID
in many different ways (effective, ap-
plied, etc.), at the permissions applied to
the object, and so on. So, obviously, you
can create some highly complex rules
and will need to filter out false positives.
A simple example to watch all ac-
cess to the /tmp directory would
be:

auditctl ‑w /tmp/ ‑p wrxa U

 ‑k "TMP_WATCH"

Additionally, you can
apply filter keys (the -k
option) to rules; they can
be up to 32 characters. For
example, you could create
a filter key for administra-
tive-related rules and a filter
key for a specific ap-
plication so that
users responsi-
ble for the
security of
that ap-
plica-
tion

can view the audit reports for only that
application.

Examples of some rules can be found
in the stig.rules files (usually in the au-
ditd docs directory). This implements a
STIG (Security Technical Implementation
Guide) [2] profile, which was initially
created by the US government (specifi-
cally, the Defense Information Systems
Agency, an arm of the Department of De-
fense) to create a baseline profile for
protecting military systems.

The STIG is highly applicable to com-
mercial and other systems, and this pro-
file covers items such as adjusting the
system time, manipulation of the passwd
and group files, manipulation of the SE-
Linux configuration, unsuccessful at-
tempts to access files, mounting of
media, modification of the sudoers file,
and so on.

If you need to build profiles from
scratch, or if you have a program that
you want to audit, you can use the au‑
trace command – which is basically like

strace but for auditing. Sim-
ply run the program using

autrace, and all the ac-
tions that the pro-
gram takes (e.g.,
system calls, file
access, etc.) will
be logged.

On exiting, you
will be told what
the program ID
was and then,
using the ausearch
tool, you can list

all the events
that took

place:

autrace /bin/ls /tmp

ausearch ‑i ‑p 6251

Note that in terms of performance, log-
ging all filesystem access can slow things
down (e.g., it will cause a lot of disk I/O
in the logging area). Logging system
calls and arguments also will slow down
system calls, because each system call
made will cause the list of system call
auditing rules to be traversed; thus, the
longer that chain is, the longer each sys-
tem call will take. So, I suggest careful
consideration of what you log – that is,
you should apply the tool only to spe-
cific programs and not system wide.

pam_tty_audit
One nifty feature of the auditd subsys-
tem is that other applications can be
built to log to it. For example, a PAM
module called pam_tty_audit can be used
to log all keystrokes sent to that particu-
lar TTY. Simply add the pam_tty_audit
module to the appropriate files in /etc/
pam.d/ (e.g., su, sudo, sshd, login, and so
on):

session required pam_tty_audit.so U

 disable=* enable=root

The above line would disable keystroke
logging for all users and then enable it
for the root user.

Conclusion
System logging is critical, especially if
you ever want to figure out what hap-
pened in the past. Adding auditd logging
can give an extremely detailed level of
logging. It can record every system call a
program makes or watch specific direc-
tories. For example, you can enable
monitoring of /tmp/ and then review the
logs to see if any programs are doing
dumb things. For forensics and intru-
sion detection, auditd can provide an
invaluable level of insight and record-
ing. nnn

[1]	� Understanding Linux Audit:
http://​doc.​opensuse.​org/​products/​
draft/​SLES/​SLES‑security_sd_draft/​
cha.​audit.​comp.​html

[2]	� Guide to the Secure Configuration of
Red Hat Enterprise Linux 5:
http://​www.​nsa.​gov/​ia/​_files/​os/​
redhat/​rhel5‑guide‑i731.​pdf

 Info

Features
Security Lessons: auditd

63linux-magazine.com | Linuxpromagazine.com	 Issue 146	 January 2013

http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.audit.comp.html
http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.audit.comp.html
http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.audit.comp.html
http://www.nsa.gov/ia/_files/os/redhat/rhel5-guide-i731.pdf
http://www.nsa.gov/ia/_files/os/redhat/rhel5-guide-i731.pdf

