
Google Maps is used pervasively
across the web; it is accurate,
feature-rich, and easy to inte-

grate with any site. Indeed, it’s some-
thing of a de facto standard. Google uses
its eponymous service to plot results for
business and street address searches,
and organizations from local govern-
ment to the media use Google Maps to
depict statistical and demographic data.
Increasingly, web applications embed
Google Maps to chart the locales of ev-
erything and anything.

For example, My Tweet
Map [1] displays where your
Twitter friends live, whereas
Physicians Resources [2]
plots the location and rank-
ing of area hospitals. One
such hospital map, of metro-
politan Chicago medical facil-
ities, is shown in Figure 1.

Currently, Google Maps
API has two versions: v2 is
the latest stable release, and
v3 is in latter-phase testing.
Both are viable solutions, yet
you might prefer one over the
other, depending on your re-
quirements.

Version 2 provides an extensive set of
JavaScript classes to customize your
maps and create applications [3]. For ex-
ample, v2 provides classes to superim-
pose polygons and polylines, which are
useful for routes and measurements. Ver-
sion 3 of the API has fewer features so
far but streamlines the API [4]. The foot-
print of v3 is much smaller, which
speeds download and load times, espe-
cially on handheld devices.

Furthermore, the v3 programmatic in-
terface is a variant of the Model-View-

Controller (MVC) pattern, making it
more concise and akin to frameworks
like Ruby on Rails and CakePHP. Version
2 requires an access key, which you can
obtain for no charge after completing a
simple form. Version 3 no longer re-
quires an access key.

Here, I’ll examine simple applications
in v2 and v3. Extensive examples can be
found on the Google Maps project page
and in the v2 and v3 documentation.
Google also provides a new feature
called the Code Playground [5], where

you can interactively run and
debug Google Maps and other
code within your browser.
The Code Playground has ex-
amples of every Google API.

Google Maps
Version 2
To use v2, you must acquire
an access key. If you want to
follow the code examples in
this article, acquire an access
key and save your key for fu-
ture reference.

Listing 1 shows a simple v2
application. The map is cen-
tered around downtown Ra-

Google Maps can pinpoint any location on the globe and more. Here’s how to embed the

service into any web application. BY ALBeRTO PLANAs AND MARTiN sTReiCHeR

Fa
sserh

a
u

s, p
h

oto
ca

se.co
m

Where in the World Are Carmen and San Diego?

KEEPING DISTANCE

Figure 1: The quality of care among metropolitan Chicago hospitals.

Google MapsWeb Works

80 issue 05 Special edition

leigh, North Carolina (Figure 2). To
avoid problems with mixed encodings,
specify the character set explicitly with a
meta tag. By default, Google Maps uses
UTF-8. The xmlns attribute in the html
element and the contents of the style
section are boilerplates to improve ren-
dering of maps in Internet Explorer.

The string YOUR_86_CHAR_KEY
should be replaced with the actual ac-
cess key that Google grants you. This
field is required, and your application
cannot work without it. v2 also imposes
some usage limits, which you can read
about when you sign up for your key [6].

The method GBrowserIsCompatible()
determines whether the browser can run
Google Maps. If the browser is unsuit-
able, nothing appears. Otherwise, the
next five lines render the map. The bulk
of the work occurs in the onLoad() func-
tion, which executes after the page is
loaded in its entirety.

The phrase new GMap(document.
getElementById(“map”)) creates a map
and associates it with the named HTML
element, map. If you glance to the end
of the code, you’ll see that map is the ID
of a div. The next three lines add the fa-
miliar pan, scroll, and zoom control at
the top left, the map type control at top
right, and the scale legend at bottom left,
respectively (Figure 2).

The last line of the function sets the
center point of the map (by geographic
coordinates) and the zoom scale. Previ-
ous versions of the Google Maps API

used the class GPoint to refer to
geographical coordinates. Now
you should use LatLng for
points on the globe and GPoint
as a point on the map in pixel
coordinates.

The v2 API provides a vast
number of features to build
custom map applications. For
example, you can create and
place markers, bounding
boxes, information boxes, and
a lot more. Additionally, you
can respond to user interface
events, such as mouse clicks
and drags.

Listing 2 shows an applica-
tion that measures the distance
(as the crow flies) between two
points.

The application has two status areas.
The first area, with ID latlong, reflects
the geographic coordinates of the center
of the map. If you click, drag, and re-
lease, the coordinates adjust to reflect
the new center. The second status area,
with ID distance, emits the distance be-
tween any arbitrary two points chosen
on the map.

Both status areas update when a par-
ticular event occurs. The former reacts to
a moveend, sent when you stop dragging
the map. The latter responds whenever
you click the mouse. When either event
occurs, Google Maps calls the function
associated with the event. Each function
is called a listener and is a common par-

adigm in user interface programming.
The use of addListener() associates a lis-
tener with an event for a specific map.

The listener associated with the event
moveend is an anonymous, straightfor-
ward function that finds the center of the
map and changes the contents of the lat-
long area. The click listener is a little
more complicated:

function(overlay, point) {

if (overlay) {

 removeOverlay(map, points, overlay);

} else if (point) {

 addOverlay(map, points, U

 new GMarker(point));

}

01 �<!DOCTYPE html PUBLIC "‑//W3C//DTD XHTML 1.0 Strict//EN"

02 � "http://www.w3.org/TR/xhtml1/DTD/xhtml1‑strict.dtd">

03 �<html xmlns="http://www.w3.org/1999/xhtml"

04 � xmlns:v="urn:schemas‑microsoft‑com:vml">

05 � <head>

06 � <meta http‑equiv="content‑type" content="text/html;
 charset=utf‑8"/>

07 � <title>Listing 1</title>

08 � <style type="text/css">

09 � v\:* {

10 � behavior:url(#default#VML);

11 � }

12 � </style>

13 � <script type="text/javascript"

14 � src="http://maps.google.com
 maps?file=api&v=1&key=YOUR_86_CHAR_KEY">

15 � </script>

16 � <script type="text/javascript">

17 � //<![CDATA[

18 � function onLoad() {

19 � if (GBrowserIsCompatible()) {

20 � var map = new GMap(document.
 getElementById("map"));

21 � map.addControl(new GSmallMapControl());

22 � map.addControl(new GMapTypeControl());

23 � map.addControl(new GScaleControl());

24 � map.centerAndZoom(new LatLng
 (37.4419, ‑122.1419), 4);

25 � }

26 � }

27 � //]]>

28 � </script>

29 � </head>

30 �

31 � <body onload="onLoad()">

32 � <div id="map" style="width: 500px;
 height: 500px"></div>

33 � </body>

34 �</html>

Listing 1: A Simple Google Maps V2 Application

Figure 2: A map of downtown Raleigh, North Carolina.

Web WorksGoogle Maps

81issue 05Special Edition

polyLine = U

 drawLine(map, points, polyLine);

var distance = calcDistance(points);

document.getElementByIdU

 ("distance").innerHTML U

 = distance + " Km"; 42.}

To compute the distance between two
points, you must place the two points on
the map. To compute a new distance,
one or both points must be deleted and
then one or both must be re-positioned.
That’s the purpose of the anonymous
function associated with the click event.
•	 When you click on the map, you click

either on an overlay (a superimposed
element) or a point on the map. Ini-
tially, the map has no overlays. If you
click on the map, a marker overlay is
added. If you click again on the map,
a new marker is added. If, however,
you click on a marker, it’s deleted. The
if statement implements that logic.

•	 When you place a second marker on
the map, a line is drawn between the

first marker and the new
marker. The distance be-
tween the two markers is cal-
culated by the traditional
spherical distance formula
and is emitted to the status
area.

•	 If you place a third and sub-
sequent marker, a line is
drawn from the penultimate
marker to the current marker
and the distance is added to
the total of all distances
shown.

•	 When you click on a marker
and remove it, the line be-
tween it and its preceding
point (if any) and the line
between it and its following
point (if any) are removed,
and the distances are then re-
calculated with the markers that re-
main.

Figure 3 shows the output from the code
of Listing 2 with a number of markers
added.

Google Maps version 2 offers many
compelling overlays and is ideal for rich
browser-based applications that you
might expect a user to run on a desktop.
For more ordinary navigation needs,

001 �<!DOCTYPE html PUBLIC "‑//W3C//DTD XHTML 1.0 Strict//EN"

002 � "http://www.w3.org/TR/xhtml1/DTD/xhtml1‑strict.dtd">

003 �<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:v="urn:schemas‑microsoft‑com:vml">

004 � <head>

005 � <title>Calculating distances</title>

006 � <style type="text/css">

007 � v\:* {

008 � behavior:url(#default#VML);

009 � }

010 � </style>

011 �

012 � <script type="text/javascript"

 src="http://maps.google.com/maps?file

 =api&v=1&key=YOUR_86_CHAR_KEY" >

014 � </script>

015 � <script type="text/javascript">

016 � //<![CDATA[

017 � var points = new Array;

018 � var polyLine;

019 �

020 � function onLoad() {

021 � if (GBrowserIsCompatible()) {

022 � var map = new GMap(document.getElementById

 ("map"));

023 � map.addControl(new GSmallMapControl());

024 � map.addControl(new GScaleControl());

025 �

026 � GEvent.addListener(map, ‘moveend’, function() {

027 � var center = map.getCenterLatLng();

028 � var latLngStr = ‘(‘ + center.y + ‘, ‘
 + center.x + ‘)’;

029 � document.getElementById("latlong").innerHTML
 = latLngStr; });

030 �

031 � GEvent.addListener(map, ‘click’,
 function(overlay, point) {

032 � if (overlay) {

033 � removeOverlay(map, points, overlay);

034 � } else if (point) {

035 � addOverlay(map, points, new GMarker(point));

036 � }

037 �

038 � polyLine = drawLine(map, points, polyLine);

039 � var distance = calcDistance(points);

040 � document.getElementById("distance").innerHTML
 = distance + " Km"; 42.});

041 �

042 � map.centerAndZoom(new GPoint(‑4.48333,
 36.66667), 4);

043 � }

044 � }

045 �

046 � function drawLine(map, points, lastLine) {

047 � var p = new Array();

048 �

049 � for (var i = 0; i < points.length; i++) {

050 � p.push(new GPoint(points[i].getPoint().x,
 points[i].getPoint().y));

Listing 2: Measuring Distance Between Two Markers

Figure 3: Measuring the length of the airport area near

Málaga, Spain.

Google MapsWeb Works

82 issue 05 Special Edition

Each instance of the JavaScript class
Map represents a single map. Although
you can have multiple maps on a page,
each must have its own instance. LatLng
represents only geographic coordinates.
To convert an address to a coordinate, or
vice versa, use the new Geocoder class.
Listing 4 shows an example. If you type
an address, the map updates to show the
location.

which you might expect to find on a mo-
bile device, turn to version 3.

Google Maps Version 3
For comparison, Listing 3 and Figure 4
show a simple v3 application for a desk-
top web browser. When the browser fin-
ishes loading the document, function on-
Load() runs and renders the map. Unlike
earlier versions of the Google Maps API,
v3 uses the new class LatLng to specify
points on the globe; latlng points to the
center of Silicon Valley.

Like other MVC frameworks, v3 uses
setters and getters to customize objects.
The array options provides a shorthand
that lets you set a collection of attributes
at once. The zoom attribute, which
ranges from 0 (the entire globe) to 20
(an individual street), is set to 12; the
scale of the map is shown; the map is
centered around the coordinates re-
corded in latlng; and the map type is
ROADMAP (a street map).The other
available map types are the self-descrip-
tive SATELLITE, HYBRID, and TERRAIN.

The initial zoom value, map center, and
map type are required; scaleControl is
optional and is false by default.

The new google.maps.Map(document.
getElementById(“map”), options) state-
ment renders the map. The HTML ele-
ment map – the 500-square-pixel div –
provides the page real estate for the
map, and options describes the initial
state of the map.

051 � }

052 �

053 � var newLine = new GPolyline(p);

054 � if (lastLine) {

055 � map.removeOverlay(lastLine);

056 � }

057 �

058 � map.addOverlay(newLine);

059 � return newLine;

060 � }

061 �

062 � function addOverlay(map, points, overlay) {

063 � map.addOverlay(overlay);

064 � points.push(overlay);

065 � }

066 �

067 � function removeOverlay(map, points, overlay) {

068 � map.removeOverlay(overlay);

069 � var oi = ‑1;

070 � for (var i = 0; i < points.length; i++) {

071 � if (points[i] == overlay) {

072 � oi = i;

073 � break;

074 � }

075 � }

076 �

077 � points.splice(oi, 1);

078 � }

079 �

080 � function calcDistance(points) {

081 � var distance = 0.0;

082 � var p1 = points[0];

083 � for (var i = 1; i < points.length; i++) {

084 � var p2 = points[i];

085 � var lat1 = p1.getPoint().y * Math.PI / 180.0;

086 � var lon1 = p1.getPoint().x * Math.PI / 180.0;

087 � var lat2 = p2.getPoint().y * Math.PI / 180.0;

088 � var lon2 = p2.getPoint().x * Math.PI / 180.0;

089 � distance += 6378.7 * Math.acos(Math.sin(lat1) *

 Math.sin(lat2) + Math.cos(lat1) *

 Math.cos(lat2) * Math.cos(lon2 ‑ lon1));

092 � p1 = p2;

093 � }

094 �

095 � return distance;

096 � }

097 � //]]>

098 � </script>

099 � </head>

100 �

101 � <body onload="onLoad()">

102 � <div id="map" style="width: 500px; height: 500px">

 </div>

103 � <div id="latlong"></div>

104 � <div id="distance"></div>

105 � </body>

106 �</html>

Listing 2: Measuring Distance Between Two Markers (cont’d.)

01 �<html>

02 � <head>

03 � <title>Listing 3: A map of
 Silicon Valley</title>

04 � <script type="text/javascript"
 src="http://maps.google.com/maps/
 api/js?sensor=false"></script>

05 � <script type="text/javascript">

06 � function onLoad() {

07 � var latlng = new google.maps.
 LatLng(37.4419, ‑122.1419);

08 � var options = {

09 � zoom: 12,

10 � center: latlng,

 mapTypeId: google.maps.
 MapTypeId.ROADMAP };

12 � var map = new google.maps.
 Map(document.getElementById
 ("map"), options);

13 � }

14 � </script>

15 � </head>

16 �

17 � <body onload="onLoad()">

18 � <div id="map" style="width:
 500px; height: 500px;"></div>

19 � </body>

20 �</html>

Listing 3: A Simple Google Maps V3 Application

Web WorksGoogle Maps

83issue 05Special Edition

The function callAd-
dress() (from v3 docu-
mentation, used with
permission) performs
the heavy lifting. When
the button is pressed,
the Geocoder object calls
the Google Geocoding
service to transform the
address to one or more
coordinates. If the result
is OK and the result set
is non-empty, the
marker is placed at the
location of the first re-
sult. Figure 5 shows a
map of Omaha, Ne-
braska. (If you call the
Google Geocoding service through the
Geocoder class, you do not need an ac-
cess key. If you call the service directly
through HTTP, you must acquire a sepa-
rate access key.)

Markers are just one of several over-
lays you can add to a map to provide
context, cues, and information. Addi-
tionally, you can add shadows and win-
dows to display text. At the moment, v3

is not as extensive as v2, but its light
weight is nonetheless compelling.

Google Maps is Fun
The Google Maps API makes it easy to
generate apps that would otherwise re-
quire extensive programming knowl-
edge, special databases, and custom
software. The v2 API supplies another
group of objects for AJAX. From the cli-
ent’s browser, you can paint terrestrial
coordinates stored in a database in many
ways. Apps that use this part of the API
include Monuments in Paris [7], Wiki-
Map [8], and Traffic in the UK[9]. n

01 �<html>

02 � <head>

03 � <title>Listing 4: A Map of any

 place</title>

04 � <script type=”text/javascript”

 src=”http://maps.google.com/maps/

 api/js?sensor=false”></script>

05 � <script type=”text/javascript”>

06 � var geocoder;

07 � var map;

08 �

09 � function onLoad() {

10 � geocoder =

 new google.maps.Geocoder();

11 � var latlng = new google.maps.

 LatLng(37.4419, ‑122.1419);

12 � var options = {

 zoom: 12,

 scaleControl: true,

 center: latlng,

 mapTypeId: google.maps.

 MapTypeId.ROADMAP };

13 � map = new google.maps.

 Map(document.getElementById

 (“map”),options);

14 � }

15 �

16 � function codeAddress() {

17 � var address = document.

 getElementById(“address”).value;

18 � geocoder.geocode(

 { address: address },

 function(results, status) {

19 � if (status == google.maps.

 GeocoderStatus.OK &&

 results.length) {

20 � if (status != google.maps.

 GeocoderStatus.

 ZERO_RESULTS) {

21 � map.set_center

 (results[0].geometry.

 location);

22 � var marker = new google.

 maps.Marker({

23 � position: results[0].

 geometry.location,

24 � map: map});

25 � }

26 � } else {

27 � alert("Geocode was

 unsuccessful due to: " + status);

28 � }});

29 � }

30 � </script>

31 � </head>

32 �

33 � <body onload=”onLoad()”>

34 � <div id=”map” style=”width:

 500px; height: 500px;”></div>

39 � <div>

40 � <input id=”address”

 type=”textbox”

 value=”Palo Alto, CA”>

41 � <input type=”button”

 value=”Geocode”

 onclick=”codeAddress()”>

42 � </div>

43 � </body>

44 �</html>

Listing 4: Drawing a Map of Any Address in the World

1]	� My Tweet Map: http://​www.​
mytweetmap.​com

[2]	�P hysicians Resources: http://​www.​
netdoc.​com/​hospital‑rankings/

[3]	� Google Maps version 2: http://​code.​
google.​com/​apis/​maps/​
documentation/​reference.​html

[4]	� Google Maps version 3: http://​code.​
google.​com/​apis/​maps/​
documentation/​v3/

[5]	� Google Code Playground: http://​
code.​google.​com/​apis/​ajax/​
playground/

[6]	� Google Maps version 2 sign-up:
http://​code.​google.​com/​apis/​maps/​
signup.​html

[7]	� Monuments in Paris: http://​www.​
kahunablog.​de/​gmaps.​php?​
map=paris

[8]	� WikiMap: http://​www.​wikyblog.​com/​
Map/​Guest/​Home

[9]	�T raffic in the UK: http://​www.​gtraffic.​
info

INFO

Figure 4: A map of Silicon Valley. Figure 5: A map of the place named in the input box.

Google MapsWeb Works

84 issue 05 Special Edition

