
The Linux kernel mailing list
comprises the core of Linux
development activities.
Traffic volumes are immense,
often reaching 10,000
messages in a week, and
keeping up to date with the
entire scope of development
is a virtually impossible task
for one person. One of the
few brave souls to take on
this task is Zack Brown.

 Zack Brown

Zack’s Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

Mercurial Kernel?
Before the security breach that necessitated re-
building virtually all the services on kernel.
org, the Linux Git repository had a Mercurial-
based mirror on that site. Joe Perches recently
asked whether the kernel.org administrators
were planning to put it back up at some point.

Matt Mackall, who had maintained that re-
pository, said it wouldn’t be returning to kernel.
org and that he was planning to recreate the
mirror somewhere else. However, he hadn’t
been able to get his SHA map file from his ker-
nel.org account after the break-in, so the new
Mercurial repository wouldn’t be compatible
with the old one. He also said that, in any case,
it could be a while before the new repository
was up and running at its new location.

BKL Gone?
It still feels odd to think that the Big Kernel
Lock (BKL) is gone for good. In olden times,
people used to say it could never be removed
because it was simply everywhere in the ker-
nel and filled too many different needs. Then
someone got the brilliant idea of gradually iso-
lating the BKL code without actually trying to
get rid of it in one fell swoop. This ultimately
led to the creation of a whole bunch of differ-
ent smaller locks to handle all the various
cases that emerged; eventually, the BKL itself
did finally wink out of existence.

But even though no part of the kernel actu-
ally uses it, remnants of it still remain in the
code comments and perhaps in the organiza-
tion of certain areas of code. Just recently, Da-
vidlohr Bueso posted a patch to eliminate a
few lingering BKL-related comments in the
USB driver.

Kernel-locking code is interesting, because it
affects the granularity of multiprocessing sys-
tems. If a lock is too intrusive, other users can
have a choppy experience, which can make
music and game playing less enjoyable – and it
can be problematic for delicate medical moni-
toring devices. But, the problem with creating
smaller, finer grained locking mechanisms is
that it adds to the overall complexity of the
kernel. It’s an interesting balancing act.

Quotas on TmpFS
Besides cleaning up old BKL comments, David-
lohr recently posted a patch to try to eliminate
one source of denial-of-service attacks on

Linux systems. On most systems, regular
users are free to fill up the /tmp directory with
as much data as they want, in spite of any
quota system restricting their home directory.
Of course, files in /tmp might disappear at any
time, but for temporary use, they can come in
handy. And, if a user’s only goal is to tie up
system resources, file integrity on /tmp won’t
be much of a concern.

Davidlohr’s patch would create a user
quota system that would apply to the /tmp di-
rectory, and to all tmpFS filesystems. But, in
order not to shake things up too much, the
default quota would be unlimited, and sys-
tem administrators could add tighter restric-
tions if they felt the need.

The idea turned out to be a somewhat con-
troversial. Christoph Hellwig felt there was no
need for a new mechanism to handle this fea-
ture – it could just as easily be implemented
as part of the usual user quota system. But,
Lennart Poettering objected that this would
require userspace activity to configure the /
tmp directory each time it was mounted.

A number of folks, including Alan Cox, got
involved in the technical discussion. It wasn’t
always clear when someone was objecting to
Davidlohr’s overall goal or just to the particu-
lar way it was being implemented. Ultimately,
the discussion ended inconclusively, but I
think, at the very least, everyone agrees that
the /tmp directory has a denial-of-service
issue that’s been around for years and that
fixing it would be cool.

Contiguous Memory
Allocation
Marek Szyprowski at Samsung has been
working on writing support for allocating
blocks of contiguous memory. He submitted a
new patch, using code from Michał Nazare-
wicz and others. One neat feature, he pointed
out, is that the code can generate contiguous
regions of RAM by relocating system memory
itself after boot-up.

One problem Marek identified with the cur-
rent version of his code, and that was subse-
quently verified by Sandeep Patil, occurs
when system pages are themselves in the
middle of some kind of operation. If they
have work still pending, Marek’s code might
fail to migrate the system memory to an out-
of-the-way location. Sandeep was able to re-

February 2012 Issue 135 lInux-magazIne.com | lInuxpromagazIne.com 94

Community Notebook
Kernel News

094-095_KernelNews.indd 94 12/13/11 3:13:24 PM

produce this failure in 100% of his test cases. Small embedded systems would typi-
cally be the beneficiaries of contiguous memory allocation features. But, contiguous
memory could also provide a speed-up for regular systems. In general, however, only
specialized systems would benefit from this type of feature.

Security Holes in /proc
Vasiliy Kulikov didn’t like that /proc/interrupts was world-readable. He said that be-
cause it contained the number of emitted interrupts, it allowed a hostile user to see
how many characters were in another user’s password. He posted a patch to close
this off, but Valdis Kletnieks objected, “This whack-a-mole ‘turn off permissions on
generally useful files because there’s an exposure’ really has to stop. On probably the
vast majority of Linux systems, it’s an embedded or a laptop/ desktop, and if you
have a malicious user running code on it already, the fact they can find out how
many characters are in the password is the *least* of your problems.”

Valdis suggested that any change of this nature should be done as part of an overall
security model. There should be a centralized security system, he said, that would
control permissions to sensitive data in a more fine-grained manner than just cutting
off access entirely to everyone.

But Vasiliy pointed out that, one way or another, security holes had to be plugged.
If private information was leaking out to where regular users could see it, then that
was a bug that needed to be fixed. In the absence of Valdis’s suggested “overall secu-
rity model,” these smaller fixes were still needed.

H. Peter Anvin suggested creating a new mount option for procFS, that would
allow some people to read /proc files and not others. He pointed out that by just blan-
keting security constraints onto all files that might conceivably pose a security risk,
the kernel folks were just forcing users to become root more and more often in order
to accomplish regular system tasks. Having more root users, he said, was not a good
solution to the problem.

Valdis liked Peter’s idea, and the discussion continued until Linus Torvalds
came in, with:

I want *one* global policy that the kernel would actually know about: is
the user physically at the machine right now.

Sadly, I don’t think the kernel has any good way to figure that out au-
tomatically.

Because quite frankly, a lot of the /proc files should be “root or desk-
top user.” If you control the hardware, you should damn well be able
to see the interrupt counts in order to do bug reports etc. without hav-
ing to sudo or similar.

Torvalds went on to say, “The person in front of the hardware re-
ally *is* fundamentally special. Right now all the distros do magic
things with the audio device because they know the person in front of
the machine is special. But all those things are ad hoc per device, and
never cover things like random /proc files etc.”

This is a very interesting overall statement about security. Accord-
ing to Linus, a person who has physical access to the machine is vir-
tually the same as the person who has root access. The assumption
seems to be that if you have physical access, you can do whatever you
want to the system anyway (juggle it, throw it against the wall, etc.), so
there’s no real way for the software to guard against your actions.

After Linus’s comment, a lot of big names like Alan Cox, Greg Kroah-Hart-
man, and Theodore Y. Ts’o jumped on board with their own ideas about how
to address the security issues; nevertheless, the discussion ended inconclu-
sively. nnn

lInux-magazIne.com | lInuxpromagazIne.com Issue 135 February 2012 95

Community Notebook
Kernel News

094-095_KernelNews.indd 95 12/13/11 3:13:29 PM

