
When the KDE desktop made
the transition from version 3
to 4, many things changed.

One of the larger changes was the intro-
duction of the plasma desktop. Instead
of a background image with icons, the
desktop is now host to plasmoids, also
known as desktop widgets.

Plasmoids can do everything from
showing icons or presenting a slide show
of your favorite pictures to monitoring
your RSS feeds and letting you update
your Twitter feed. In this article, I will
look at how to develop plasmoids as
well as the architecture behind plasma.

Architecture
The plasma desktop is built from several
components. Two are of particular inter-
est: the visualization and the data
sources. The important thing here is not
these two parts specifically but the fact

that there are
two parts.
The reason
for this is that
the plasmoid
visualization
usually is sep-
arated from
the data. This
gives results

in a good model-view architecture, but
also provides the ability to visualize
common data in multiple ways without
having to re-implement the code for the
data source.

In this separation, the data engines
have been equipped with common good-
ies, such as support for polling, control
of the minimum polling period, the abil-
ity to support asynchronous events, a
mechanism to provide multiple values,
and so on. All of these abilities are given
from simply inheriting the Plasma::​Da­
taEngine base class.

In the same manner, by inheriting
from Plasma::Applet, you get a good
starting point for creating applets. These
applets, when combined with a desktop
file, graphics and more, are what make
up plasmoids. So, I’ll get started and
build a plasmoid of my own.

A Plasmoid
The plan is to build a simple system load
monitoring applet. It will show the load
average from the last minute in a traffic
light, as shown in Figure 1. The light in-
dicates low, high, and too high load lev-
els with the colors green, yellow, and
red, respectively. Luckily, a data engine
is already available for this: the system
monitor. Before I go into detail about it,

I’ll show you how to lay out some boiler-
plate code.

To start, look at the header file shown
in Listing 1. In the file, the class Plasma­
LoadLight is derived from the Plasma::​
Applet class. The constructor, paintInter­
face, and init provide implementations
of virtual functions. The idea with init is
to push complex parts of the initializa-
tion from the constructor to init. The
paintInterface constructor is called when
the visualization needs to be updated.

Then follow the two slots sourceAdded
and dataUpdated. A slot is a callback
function that you can connect to a sig-
nal. More on this later. The last part of
the class contains the m_load private
that contains the current load level.

The interesting code follows in the im-
plementation of the class shown in List-
ing 2. Starting from the top, lines 5-12
show the constructor implementation.
Here, I simply tell plasma to use the
standard background and set a reason-

We take a peek at how to create your own plasmoids for the latest KDE desktop, giving you the power to build

the perfect active desktop environment. By Johan Thelin

A developer’s guide to Plasmoids

Creating
Plasmoids

Figure 1: The load light

plasma applet in action.

[1]	� Listings for this article: ftp://​ftp.​
linux‑magazin.​com/​pub/​listings/​
magazine/​114/plasmoid/

[2]	� KDE TechBase:
http://​techbase.​kde.​org

INFO

C
osm

i, Foto
lia

KDE PlasmaCover story

36 ISSUE 114 May 2010

able starting size. The other part of the
class’s initialization takes place in the
init function (lines 14-18). Here, I re-
quest the data engine systemmonitor and
connect the signal sourceAdded to a slot
with the same name in the applet. This
means that for every source of informa-
tion that the system monitor data engine
adds, the sourceAdded slot of the applet
will be called. This brings me to the next
function in the implementation: source­
Added (lines 20-28). The data engine
emits a signal that will trigger this func-
tion once for each source it makes avail-
able. The system monitor data engine
simply lists its sources, whereas other
engines could have sources that appear
and disappear during its lifetime. Exam-
ples include data engines supporting re-
movable hardware and networking ser-
vices that appear and disappear. There-
fore, the sourceRemoved signal is avail-
able from the data engine class, but I ig-
nore it in this case.

When the source cpu/system/loadavg1
is added, I ask the data engine to con-

nect me to the source by way of the con­
nectSource method. The arguments of
this function are, from left to right:
source name, receiving object, and sam-
ple period in milliseconds. So, in line 24,
I ask to be updated about the cpu/sys­
tem/loadavg1 every second.

The connectSource method only takes
a receiver object pointer, not a slot to
connect to. This is because it assumes
the receiver to have a slot with the fol-
lowing signature present:

dataUpdated(U

 const QString &sourceName, const U

 Plasma::DataEngine::Data &data)

When the requested source has new
data available, the dataUpdated slot is
triggered. It is important to understand
that the sampling period given when
connecting to a
source is a hint
(i.e., the period
can be forced lon-
ger by the data en-

gine). Also, this controls the period be-
tween requests, not necessarily the pe-
riod between new data.

For instance, imagine an RSS feed-
monitoring data engine. It might not
make sense for this data engine to re-
quest new data at a shorter period than
10 seconds. This means that you will not
get shorter periods. Also, when making
a request across the network, the reply is
asynchronous, and the time for the re-
sult to return is arbitrary. Thus, your
dataUpdated slot might be triggered at
uneven intervals as the data ticks in.

Next in the source code, the dataUp­
dated method implementation appears
in lines 30-41. Because this slot is called
for all data sources, I start by ensuring
that it is indeed the expected source cpu/
system/loadavg1. The data is then given
as a hash table with key-value pairs. A

Figure 2: The Plasma Engine Explorer showing the systemmonitor

data engine.

01 �#ifndef LOADLIGHT_H

02 �#define LOADLIGHT_H

03 �

04 �#include <Plasma/Applet>

05 �#include <Plasma/DataEngine>

06 �

07 �class QSizeF;

08 �

09 �class PlasmaLoadLight : public Plasma::Applet

10 �{

11 � Q_OBJECT

12 �

13 �public:

14 � PlasmaLoadLight(QObject *parent,

15 � const QVariantList &args);

16 �

17 � void init();

18 �

19 � void paintInterface(QPainter *painter,

20 � const QStyleOptionGraphicsItem
*option,

21 � const QRect &contentsRect);

22 �

23 �protected slots:

24 � void sourceAdded(const QString &name);

25 � void dataUpdated(const QString &sourceName,

26 � const Plasma::DataEngine::Data
&data);

27 �

28 �private:

29 � double m_load;

30 �};

31 �

32 �#endif // LOADLIGHT_H

Listing 1: loadlight.h

In this article, I’ve only looked at developing plasmoids with
C++. However, it is easy to develop plasmoids using a range of
languages, including JavaScript, Ruby, and Python. To get eve-
ryone started with creating plasmoids, the KDE people have
started working on an editor called PlasMate.

Figure 3 shows PlasMate’s main editing window with the com-
ponents at the top, the current file in the middle, and a preview
at the bottom. The tool is not fully usable yet, but the project is
described at KDE TechBase, and the existing code can be
checked out from the KDE playground using Subversion:

svn co svn://anonsvn.kde.org/U

 home/kde/trunk/playground/baseU

 /plasma/plasmate

Once checked out, you can build the code with CMake. However,
the source code requires KDE 4.3, so you might have to upgrade
your distributions version of KDE.

PlasMate

Cover storyKDE Plasma

37ISSUE 114May 2010

little oddity of the system monitor data
engine is that it tends to return a couple
of results without any proper data before
the actual expected data starts coming
in. This issue is not really too important,
but to avoid any problems, I also check
that a key actually exists in the data. In
this particular case, I only get one value,
so if there is a key, I pick the first value
and use it to update the m_load member
variable.

Having updated m_load, I call update
to trigger a repaint event. This in turn re-
sults in a call to the paintInterface
method, where the data is used to paint
a circle with the value as text inside of it.

The last step of the implementation is
to export the class as a plasma applet in
line 64. The K_EXPORT_PLASMA_AP­
PLET macro takes two arguments: a

name for the library followed by the
name of the class to expose. After that,
the .moc file from the meta-object com-
piler is included in the file because only
a single class is involved in this case.

Exporting the class as an applet is the
first part of building a plasmoid. So that
the plasma desktop is able to find your
applet, you must create a desktop file for
it. The desktop file is a list of key-value
pairs and can be downloaded together
with the source code for this project [1].

The keys used are:
•	 Name: The name of the plasmoid

shown to the users. In this case, Load
Light.

•	 Comment: A comment describing the
plasmoid.

•	 Type: Must be Service.
•	 ServiceTypes: Must be Plasma/Applet.

•	 X-KDE-Library: The library name.
•	 X-KDE-PluginInfo-Name: The plugin li-

brary name.
•	 X-KDE-PluginInfo-License: The license

of the library, for example, GPL.
•	 X-KDE-PluginInfo-EnabledByDefault:

Set this to true.
•	 X-KDE-PluginInfo-Author: Contact

name for author
•	 X-KDE-PluginInfo-Email: Contact email

for author.
Now all that is left is to build and install
the plasmoid in your KDE environment.
The KDE project uses the CMake tool for
building. To control CMake, a CMake­
Lists.txt file is used. This file is more or
less a boilerplate piece of code with the
right library name in it and can be
downloaded together with the source
code for this project.

01 �#include "loadlight.h"

02 �

03 �#include <QPainter>

04 �

05 �PlasmaLoadLight::PlasmaLoadLight(QObject *parent,

06 � const QVariantList &args)

07 � : Plasma::Applet(parent, args),

08 � m_load(0.75)

09 �{

10 � setBackgroundHints(DefaultBackground);

11 � resize(100, 100);

12 �}

13 �

14 �void PlasmaLoadLight::init()

15 �{

16 � connect(� dataEngine("systemmonitor"),
SIGNAL(sourceAdded(QString)),

17 � this, SLOT(sourceAdded(QString)));

18 �}

19 �

20 �void PlasmaLoadLight::sourceAdded(const QString &name)

21 �{

22 � if(name == "cpu/system/loadavg1")

23 � {

24 � data�ngine("systemmonitor")‑>connectSource(name,
this, 1000);

25 � disc�onnect(dataEngine("systemmonitor"),
SIGNAL(sourceAdded(QString)),

26 � this, SLOT(sourceAdded(QString)));

27 � }

28 �}

29 �

30 �voi�d PlasmaLoadLight::dataUpdated(

31 � �const QString &sourceName,

 const Plasma::DataEngine::Data &data)

32 �{

33 � if(sourceName != "cpu/system/loadavg1")

34 � return;

35 �

36 � if(data.keys().count() == 0)

37 � return;

38 �

39 � m_load = data[data.keys()[0]].toDouble();

40 � update();

41 �}

42 �

43 �void PlasmaLoadLight::paintInterface(QPainter *painter,

44 � const QStyleOptionGraphicsItem *option,

45 � const QRect &contentsRect)

46 �{

47 � if(m_load < 0.5)

48 � painter‑>setBrush(Qt::green);

49 � else if(m_load > 0.95)

50 � painter‑>setBrush(Qt::red);

51 � else

52 � painter‑>setBrush(Qt::yellow);

53 �

54 � painter‑>drawEllipse(contentsRect);

55 �

56 � QFont f;

57 � f.setPixelSize(contentsRect.height()/4);

58 � painter‑>setFont(f);

59 � painter‑>drawText(contentsRect,

60 � Qt::AlignCenter,

61 � QString::number(m_load, 'f', 2));

62 �}

63 �

64 �K_EXPORT_PLASMA_APPLET(loadlight, PlasmaLoadLight)

65 �

66 �#include "loadlight.moc"

Listing 2: loadlight.cpp

I deleted a figure
and corrected the
bulleted list. -rls

KDE PlasmaCover story

38 ISSUE 114 May 2010

To build the project, you must know
the prefix of your KDE installation. To
find this, you can use the kde4-config ap-
plication. In my case, the prefix is /usr.

$ kde4‑config ‑‑prefix

/usr

Now enter the source directory and run
cmake and make to build the project. For
the CMake call, add the prefix as the
value to the CMAKE_INSTALL_PREFIX
definition:

cmake ‑DCMAKE_INSTALL_PREFIX=/usr

make

To install the plasmoid, run make install
with the required privileges, then run
the kbuildsycoca4 utility to force KDE to:

sudo make install

kbuildsycoca4

Then, you can either restart your plasma
session or use the plasmoidviewer utility
to test your plasmoid. To find out about
known plasmoids, along with each plas-
moid’s comment from the desktop file,
use the ‑‑list argument. Or, simply give
the name of your plasmoid to the viewer
as an argument, and it will show it:

$ plasmoidviewer U

 ‑‑list | grep loadlight

plasma‑applet‑loadlight ‑‑ Load U

 Light Plasmoid, monitoring the U

 systems load average

$ plasmoidviewer U

 plasma‑applet‑loadlight

This is all it takes to add an applet to the
plasma desktop. As you can tell, it is a
fairly straightforward process of harvest-
ing data, implementing the applet inter-
face, and exposing your code to the
plasma.

However, to add real functionality to
the desktop, you must also provide your
own data engines.

Data Engines
When developing data engines, your
best friend will be the plasmaengine­
explorer utility. This tool allows you to
browse and query the available data en-
gines and gives you a mechanism to ex-
plore the available sources of data, as
well as test your own implementations.
Before I look at a custom data engine, I’ll

Figure 3: PlasMate’s main editing window.

Cover storyKDE Plasma

39ISSUE 114May 2010

give it a try and explore the available
data engines. For example, Figure 2
shows the uptime from the system moni-
tor data engine.

Creating a custom data engine is very
similar to the process of creating a plas-
moid. For instance, the CMakeLists.txt
and desktop files are still there. The only
difference is that desktop file declares
the service type to be Plasma/DataEn­
gine.

When it comes to the C++ class, the
base class used is Plasma::​DataEngine
instead of the Plasma::Applet class; thus,
I have another interface to implement.
To illustrate this, I will implement a data
engine that serves random numbers and
is queried by the Engine Explorer utility.

Now look at the class declaration as
shown in Listing 3. It shows one of the
most basic data engine interface imple-
mentations possible. Continuing to the
class implementation, Listing 4, you can
see that the implementation is just as
simple.

It starts with a straightforward con-
structor (lines 5-8). Commonly, the set­
MinimumPolling​Interval is called if you
want to prevent being polled too often.
In this case, however, I can serve an al-
most unlimited amount of random num-
bers per second, so I do not set a limit
here.

The sources method that follows in
lines 10-13 is also quite trivial. Here,
simply state that the source "Number" is
supported. The two functions, sourceRe­
questEvent and updateSourceEvent, that
follow are where the real work is per-
formed.

A request event occurs when a source
is requested the very first time. It is still
expected to set a value, so the imple-
mentation first initializes the random
number generator with the use of qs­
rand() before it calls the update event
method.

An update event occurs every time the
data are meant to be updated. Note that
the updateSourceEvent method does not
return an actual value; instead, it uses
the setData method
to announce that
new data are avail-
able. By using this
approach, you can
implement asyn-
chronous data en-
gines easily with
the use of exactly
the same mecha-
nisms. Simply set
your request for
data from the up-
date event and
then call setData

from your code where you receive the
data.

Building and installing the data engine
follows exactly the same pattern as
building an applet, so I will not go into it
again. To test your engine, you can then
use the Engine Explorer and request a
number or two.

Building a Desktop
As you can see, building plasmoid ap-
plets and data engines is not very hard
to do. The object is to implement a given
API. If you want to look into the art of
building plasmoids, the next place to
visit is KDE TechBase [2]. There, you can
find tutorials as well as detailed API ref-
erence documentation. n

01 �#ifndef RANDOMNUMBERENGINE_H

02 �#define RANDOMNUMBERENGINE_H

03 �

04 �#include <Plasma/DataEngine>

05 �

06 �/**

07 � * An engine that provides random numbers.

08 � */

09 �class RandomNumberEngine : public Plasma::DataEngine

10 �{

11 � Q_OBJECT

12 �

13 �public:

14 � RandomNumberEngine(�QObject *parent, const
QVariantList &args);

15 � QStringList sources() const;

16 �

17 �protected:

18 � bool sourceRequestEvent(const QString &name);

19 � bool updateSourceEvent(const QString &name);

20 �};

21 �

22 �#endif // RANDOMNUMBERENGINE_H

Listing 3: randomnumberengine.h

01 �#include "randomnumberengine.h"

02 �

03 �#include <QDateTime>

04 �

05 �Rand�omNumberEngine::RandomNumberEngine(QObject *parent,
const QVariantList &args)

06 � : Plasma::DataEngine(parent, args)

07 �{

08 �}

09 �

10 �QStringList RandomNumberEngine::sources() const

11 �{

12 � return QStringList() << "Number";

13 �}

14 �

15 �bool �RandomNumberEngine::sourceRequestEvent(const
QString &name)

16 �{

17 � if(name != "Number")

18 � return false;

19 �

20 � qsrand(QDateTime::currentDateTime().toTime_t());

21 � return updateSourceEvent(name);

22 �}

23 �

24 �bool �RandomNumberEngine::updateSourceEvent(const QString
&name)

25 �{

26 � if(name != "Number")

27 � return false;

28 �

29 � setData(name, qrand());

30 � return true;

31 �}

32 �

33 �K_EXP�ORT_PLASMA_DATAENGINE(randomnumber,
RandomNumberEngine)

34 �

35 �#include "randomnumberengine.moc"

Listing 4: randomnumberengine.cpp

KDE PlasmaCover story

40 ISSUE 114 May 2010

