
Most GNU/ Linux users know
that the command line uses
Bash (Bourne Again Shell) [1],

but what fewer know is that, by default,
they use the plainest version of Bash.
The truth is that Bash is a command
much like any other. It might be the
command that runs other commands – a
command interpreter – but, just like any
other command, its behavior can be rad-
ically altered by the options you add
when starting it up or by running some
of its built-in commands (builtins).
Moreover, you can even choose an en-
tirely different shell through which to in-
teract with your system.

Admittedly, many of Bash’s options
and builtins [2] are of interest only if you
are writing scripts. Desktop users are un-
likely, for example, to find uses for a
login shell or builtins like continue or de‑
clare. Still, even beginners at the com-
mand prompt can benefit from learning
more about the options available from
the command line.

Modifying Bash is easy. From any
computer or terminal, you can start Bash

or another shell just like any other com-
mand. In Gnome, you can add options
by running Gnome Terminal and creat-
ing a custom profile. When the profile is
created, select Edit | Profiles | Edit | Title
& Command. Then check the Run a cus‑
tom command instead of my shell check-
box (Figure 1). In the Custom command
field, enter the form of the Bash com-
mand you want to run, then, directly
below it, select what you want to hap-
pen when you exit from the command.

Similarly, in KDE, open Konsole and
create a new profile by selecting Settings
| Manage Profile. Highlight the new pro-
file and click Edit Profile | General to
modify the Bash command (Figure 1). If
you add the Konsole widget to your
panel or folder view, it presents a list of
profiles from which you can choose to
suit your needs.

Options effects
The basic structure of the Bash com-
mand is no different from any other
command: bash [options] [arguments].
And, just like any other command, bash

has a mixture of single-letter options be-
ginning with a hyphen (‑) that it inher-
ited from earlier incarnations, along with
longer options that begin with a double
hyphen (‑ ‑) that were added by the GNU
Project.

However, as a command, bash does
behave in some unusual ways. The first
argument after the options can be a file
full of commands that Bash runs instead
of waiting for your input at the key-
board. Even more significantly, as Bash
starts, it refers to /etc/ profile, the generic
Bash profile, and ~/ .profile or ~./ .
bash_profile, the customized profile in
the home directory of the current ac-
count, as well as /etc/ bash.bashrc and
~/ .bashrc for non-login shells. You can
prevent the reading of profile files by
adding the ‑‑noprofile option and of the
*bashrc files by adding the ‑‑norc option.
Instead, you can force Bash to use a re-
placement for all bashrc files with the
option ‑‑rcfile [file].

Many of Bash’s options are of interest
mainly to advanced users, although you
might try running ‑‑verbose for a while to
see which environment variables are in-
voked by each command (Figure 2).
Many, like those that change the startup
files, modify resources that Bash uses.

even beginners can benefit from a greater understanding of the Bash

shell’s many built-in commands. BY BRUCE BYFIELD

Moving beyond basic Bash

SHELL GAMES

S
eb

a
stia

n
 D

u
d
a
, 12

3
R

F

Command Line: Bash BuiltinsLinuxuSer

88 ISSUE 111 FeBRuaRy 2010

However, you might try running the
command bash ‑‑debugger ‑O extdebug
to run Bash in debugger mode. Another
moderately advanced option is to start a
restricted shell with ‑r, ‑‑restricted, or ‑O
restricted_shell. A restricted shell is ex-
actly what it sounds like: one in which
some basic actions are not permitted.
These include changing directories, turn-
ing off restrictions with set, and another
nine or ten actions [3].

Some system administrators use a re-
stricted shell to prevent users from mov-
ing about in the shell, but this technique
is a weak security tactic because you do
not need to be much of an expert to start
a shell that is interactive. Instead, a re-
stricted shell is most valuable when you
want to test programs that might be
buggy or untrusted (Figure 3). By run-
ning such programs in a restricted shell,
you can hope to minimize any damage
that they cause.

Perhaps the most interesting option is
‑O [modification], which affects Bash in
a number of simple yet productive ways.
You can start the same modifications
with Bash’s builtin shopt ‑s [option].

Besides the extdebug and restricted_
shell options already mentioned, some of
the most immediately useful modifica-
tions (mods) affect navigation. For in-
stance, if you run bash ‑O autocd, Bash
interprets the name of a subdirectory
that is entered as an alias for using the

cd command to move to the subdirectory
(Figure 4). Another handy mod is cd‑
spell, which tries to correct the misspell-
ings of directory names automatically –
although it usually requires the full path
and fails when you use abbreviations
like ./ for the current directory. Similarly,
dirspell corrects misspellings of directory
names in file completion.

Another mod for file completion is no‑
caseglob, which ignores the usual dis-
tinction between upper- and lowercase
letters. Also, checkjobs di-
rects Bash to display the
status of running or
stopped jobs when you
exit Bash. The mailwarn
mod has Bash tell you
when a file containing
mail has been read since
the last time Bash ac-
cessed it.

Builtin Commands
Many of Bash’s builtins are for scripting,
which is a topic for another day, but in
addition to shopt, with its modifications
of Bash’s behavior, the builtins also in-
clude functions that are useful in every-
day desktop computing.

In fact, Bash’s builtins are unavoid-
able. If you have ever typed pwd to
check which directory you are in or cre-
ated an alias so that entering ls is equiv-
alent to typing ls ‑‑color=auto, then you

have used Bash’s
builtins. For ex-
ample, you can’t
even navigate at
the prompt with-
out using the cd
builtin.

Several builtins give
you basic information
about your system. For
instance, the type com-
mand either tells you
whether a command is an
alias or builtin or it gives
the path to the executable
(Figure 5). You cannot see
system commands like
apt‑get unless you are
logged in as root, but type
can satisfy your curiosity
about the commands you
are using and how each is
regarded. For example, cp
(copy) is a essential com-

mand and is placed in /bin, whereas
sudo, which allows you to perform root
functions from another account, is less
essential to your system and is therefore
placed in /usr/ bin. Also, you can use
type to check to see whether a command
is an alias, although you might prefer to
use the alias command instead.

Another builtin that gives you infor-
mation is jobs, which lists processes and
whether they are running or stopped –
something that can be hard to tell if you

are running
commands in
the background,
especially if
they follow the
Unix tradition
of not providing
completion
messages.

Entering the
bare command will give you a list of the
processes owned by the current user ac-
count and the status of each. If you want
to end a process because it is misbehav-
ing, you can enter job ‑l to find its pro-
cess ID, then enter kill [processID] to
shut it down.

Other builtins both give information
and edit system behavior. For example,
the unadorned command set lists all en-
vironmental variables, whereas other
options allow you to turn off or on stan-
dard system behavior such as brace ex-
pansion (‑B), which is Bash’s ability to
replace a variable typed in curly braces
with its value.

Similarly, ulimit ‑a gives you informa-
tion about system resource limitations,
such as the maximum number of threads
allowed or the maximum number of pro-

Figure 1: Whether you run KDE (left) or Gnome (right), you can run a modified version of Bash, or another shell

altogether, by making a simple change in your desktop.

Figure 2: If you’ve ever wondered what happens when you run a com‑

mand, run Bash with the verbose option.

Figure 3: A restricted shell is just

what it sounds like: a shell in which

some functionality, like changing

directories, is not allowed.

LinuxuSerCommand Line: Bash Builtins

89ISSUE 111FeBRuaRy 2010

cesses that a single user can own (Figure
6). But add a number, and you can reset
the limit. For example, ulimit ‑x 10 sets
the number of file locks to 10. You can
also choose whether a limit is hard or
soft – that is, whether only the root user
can raise it, or anyone can.

Security-minded users might also be
interested in the umask utility. Just run-
ning the umask command without op-
tions or a mode tells you the default per-
missions when a new file is created on

the system. If I run umask on the system
I am using currently, I find that the de-
fault is set to 0077 in octal notation,
whereas if I run umask ‑S, I find that, in
symbolic notation, the default permis-
sions are u=rwx,g=, o= (Figure 7).
Both of these notations mean the same

thing: The owner of a file can
read, write, or execute it, but
neither their group nor any-
one else except root can do
any of these things. If I
wanted to allow others to
read new files, I could enter
umask 4477 to change the
default.

Yet another builtin worth
knowing about is history,

which manages the command history
stored for each user in the .bash‑history
file in their home directory. The bare
command lists all the commands entered
at the command line, with the oldest
listed first. For privacy, you can type his‑
tory ‑d[position] to remove a specific
command, or history ‑c to clear the entire
history.

Alternative Shells
The more advanced your computing
skills, the more benefits you can get
from Bash, both in terms of customiza-
tion and functionality. The examples
given here are no more than an introduc-
tion to some of the diversity you can find
when you start moving away from the
defaults for Bash.

Once you have thoroughly explored
Bash, you might want to consider ex-
ploring other shells. Most major distribu-
tions package several shells, installing
their executables into the /bin directory.
To use them, all you need to do is edit
the profiles of the Gnome Terminal or
Konsole and the $BASH environment

variable to refer to
them.

Relatively few users
bother with the origi-
nal Bourne shell or
with the original C
shell (csh) or Korn
shell (ksh), although
they still have enough
enthusiasts that large
distributions like De-
bian include them.
However, most users
exploring alternative
shells today are more
likely to want the
added functionality of
their successors, such
as tcsh [4] or zsh [5].

I have heard of
shells like tcsh and

zsh described as being to Bash what
Bash is to the Windows command line –
in other words, vastly superior. That is
an exaggeration and, in tcsh’s case, is
probably helped by the fact that tcsh is
the default shell of FreeBSD. But, with-
out a doubt, these shells possess numer-
ous features that Bash either lacks or has
in less sophisticated form. For instance,
tcsh not only has a scripting syntax simi-
lar to that of the C programming lan-
guage, but it also has programmable
word completion and spelling correction.
Similarly, zsh boasts spell-checking, pro-
grammable completion, and multiple re-
direction.

New users might also want to explore
recently developed shells like fish [6],
whose goal is to make working with the
command line easier. Fish includes high-
lighted syntax and enhanced history and
tab completion.

Each of these alternatives takes some
adjustment, but often commands will be
similar enough that you should have
only minimal trouble adjusting to each
shell. Like Bash, with its options and
builtins, though, these alternative shells
emphasize one of the most important
points about the command line: Just as
on the desktop, you don’t have to settle
for what you’re given at the GNU/ Linux
prompt. If you explore, you will soon
discover that usually you can do things
your own way – and the more you learn,
the truer that will be. n

[1] Bash:
http:// www. gnu. org/ software/ bash/

[2] Bash builtins:
http:// www. faqs. org/ docs/ bashman/
 bashref_55. html# SEC55

[3] Restricted shell: http:// www. faqs.
 org/ docs/ bashman/ bashref_75. html

[4] Tcsh: http:// www. tcsh. org/ Welcome

[5] Zsh: http:// www. zsh. org/

[6] Fish: http:// fishshell. org/ index. php

INFO

Figure 4: Here, the ‑O option tells Bash to treat a direc‑

tory name that is entered as the equivalent of changing

to that directory, and it will try to correct directory

names that are misspelled.

Figure 5: You can use the type command to

find out whether a command is an alias,

built in, or external command.

Figure 7: Use umask to list or set the default

permissions, either in octal (no option) or

symbolic notation (‑S).

Figure 6: The ulimit ‑a command shows system resource limita‑

tions for your computer. The table lists a resource, its measure‑

ment, the option to list it separately, and whatever limits are

currently placed on it. Also, you can use the ulimit command to

change limits.

Command Line: Bash BuiltinsLinuxuSer

90 ISSUE 111 FeBRuaRy 2010

