
n the summer of 2005, yet another

web framework was released into the

open source world [1]. Only three

short years since Django’s release, it has

gained enough traction to inspire the for-

mation of the Django Software Founda-

tion [2]. With the formation of the DSF,

Django joins an impressive list of other

projects with their own foundations, in-

cluding Apache, Perl, and Python.

Django is a Python web development

“framework,” or set of libraries, that al-

lows developers to work on the unique/

interesting parts of an application with-

out worrying much about the boring in-

frastructure under the hood. Django uses

the MVC pattern like many other frame-

works, such as Ruby on Rails and the

various Perl and PHP frameworks.

One of Django’s killer features is its in-

credibly slick admin interface that is au-

tomatically built for you. In this article, I

will walk through the steps required to

build a small Twitter-like application so

you can see the admin in action.

Django has been used to build a lot of

high-profile websites [3], such as Every-

Block.com, Pownce.com, and Tabblo.

com. Also, it is the default framework in-

cluded with Google’s AppEngine, and

I’ve heard that Google uses it to some

extent internally. Django is also the

foundation of the commercial CMS El-

lington, which is used by several large

news organizations, including The

Washington Post.

Jacob Kaplan-Moss, President of the

Django Software Foundation and one of

the creators of Django, said that the

Foundation was created so the project

could take the next step in its life cycle

as an open source project. “We’ve obvi-

ously succeeded in attracting a large, vi-

brant community, so we felt that it was

time that the community really ‘owned’

Django. Having the Foundation around

pretty much guarantees that Django will

stick around, even if any individuals or

companies lose interest,” he says.

Kaplan-Moss points out that the project

now accepts donations for improving

Django, and in the near future, the Foun-

dation will primarily support Django

through developer sprints, user meet-ups,

and other community activities. Many de-

velopment sprints will occur before the

release of Django 1.0, and Kaplan-Moss

says the Foundation will help key people

attend sprints and work together. “If the

Foundation helps Django move forward

even a tiny bit faster, I’ll be thrilled,”

 Kaplan-Moss says.

Django is scheduled to release an official

version 1.0 in early September 2008.

For this article, I’ll use the bleeding-edge

code from Subversion, which should

closely match the release. Your best bet

is to install the official 1.0 release [4]

when available or grab the bleeding-

edge code from Subversion with:

svn checkout 5

http://code.djangoproject.com/5

svn/django/trunk/

Regardless of which version you choose,

Django installs easily. While you’re con-

We talk to one of the creators of the Django project about the formation of the Django Software Foundation,

and we show you how to get started with this user-friendly web framework. BY FRANK WILES

Django Web Framework

38 ISSUE 95 OCTOBER 2008

038-040_django.indd 38 13.08.2008 16:12:06 Uhr

nected to the Internet, simply run the

following as root

python setup.py install

to install Django into the site-packages

directory of wherever your Python in-

stallation lives. For the example, I’ll use

SQLite as the database. However, Django

has excellent support for PostgreSQL and

MySQL.

To use SQLite, install the pysqlite2

package [5] and follow its installation

 instructions.

Django separates everything into “proj-

ects” and “apps.” For example, if you

build a large website with a blog, forum,

and e-commerce section, the site itself is

the project, and the blog, forum, and e-

commerce code are apps. Really, this is

just a way to organize sub-projects within

your overall project.

To start a new project, run

django-admin.py startproject 5฀

mytwit

which creates the directory mytwit with

a few initial stub configuration files and

tools. Now you need Django to generate

the stubs for the example app, which I

will call Twit. To do so, run from inside

the mytwit directory:

python manage.py startapp Twit

In mytwit/ settings.py, set DATABASE_

ENGINE = 'sqlite3' and DATABASE_

NAME to the full path to mytwit/ twits.

db, the SQLite file in which your data-

base will be stored. The full path de-

pends on the directory in which you ran

the initial startproject. So that you don’t

have to revisit settings.py again, you

must add two items to the INSTALLED_

APPS list: django.contrib.admin for the

admin interface and the mytwit.Twit

app. If you add to the end of the list,

make sure you add the trailing commas.

After defining the database you will

use, you must build your Model, which

is a Python object that defines the SQL

tables and columns and their relation-

ships. Because your simple application

has only one table, just define the one

class. Thus, mytwit/ Twit/ models.py

should be as shown in Listing 1.

First, import the Django model helpers

and then define your Twit class, which

will contain a date column and a text

column for your actual entry. Then de-

fine the special __unicode__ method,

which tells the Model how to display an

instance of the object in string form (in

this case, just print the date and full

entry). This information is used by the

admin when displaying listings of entries

from the database. The empty class

Admin tells Django that you want it to

provide the admin interface for you.

To check what you’ve done, validate

your models by running:

python manage.py validate

If everything is okay, it should return 0

errors found. Now Django can build the

database tables. To do so, enter

python manage.py syncdb

which outputs several Creating table

lines, some of which are for user/group

permissions, others for the admin, and

the final for the Twit table. At this point,

Django also prompts you to create a su-

peruser for the admin interface, but re-

member the username and password,

which you will need later.

After successfully creating the Model

and database tables, we need to turn

on the admin interface. This is done

by uncommenting the three lines in the

mytwit/urls.py file that was created

when we ran startproject. The three lines

are labeled telling you to uncomment

them to turn on the admin. The urls.py

file is how Django maps different URLs

Django Web Framework

39ISSUE 95OCTOBER 2008

01 from django.shortcuts 5

 import render_to_response

02 from models import Twit

03

04 def alltwits(request):

05 all_entries = Twit.5฀

objects.all().order_5

฀฀฀฀฀by("date").reverse()

06 return render_to_5฀

response('all_twits.html', 5฀

{ 'entries': all_entries })

Listing 2: Reverse Entries01 from django.db import models

02

03 class Twit(models.Model):

04 date = models.5

DateField('Date‘)

05 entry = models.CharField5฀

(max_length=‘500‘)

06

07 def __unicode__(self):

08 return '%s %s‘ % 5฀

(self.date, self.entry)

09

Listing 1:
mytwit/ Twit/ models.py

038-040_django.indd 39 13.08.2008 16:12:08 Uhr

which runs a test server on 127. 0. 0.

 1:8000. If you need to run it on a differ-

ent IP address or port, you can append

that to the command with:

python manage.py 5

runserver 127.0.0.1:5555

Assuming you’re using the defaults, go

to http:// 127. 0. 0. 1:8000/ admin and you

will be prompted to log in to your app’s

admin interface. After logging in, you

will see the screen shown in Figure 1.

Because you are building a personal

application, you can ignore the Sites and

admin sections for now and just click on

the Add icon in the Twit box. Then you

will see something like Figure 2.

Now you can insert data for your

entry. Clicking Today automatically fills

in today’s date, or you can use the calen-

dar widget to pick another date. Next,

input text in Entry and click Save, after

which you return to a page that lists all

the Twits in your database. If you click

on the entry you just made, you go to an

edit/ delete interface to make changes or

remove the entry.

Playing is fun, but you should share

these entries on the web with friends. To

do so, you must add a view (a module

that performs the logic) and a template

(how data are presented to the user). If

you are used to other MVC frameworks,

in which the view typically refers to the

template itself, this can be confusing.

To begin, edit your mytwit/ Twit/ views.

py to contain a simple method that re-

turns all of your entries in reverse chron-

ological format (Listing 2). This defines

the method alltwits, which grabs all of

your Twit objects ordered by the date

field and reverses them. Then it calls

render_to_response() with the name of

the template for the view and a diction-

ary that contains the

data you want

passed on to the

template.

After you’re done

with the view, you

need to build the

template. To make

things fit better on

the page, see my

simple markup ex-

ample (Listing 3) to

get a general idea. To

keep your templates

to different parts of your application

with regular expressions.

Additionally, we need to create an

admin.py file. In this example, we're just

using the defaults, but this is where you

could customize various aspects of the

admin interface. For this short example,

mytwit/Twit/admin.py needs to read:

from django.contrib import admin

from mytwit.Twit.models 5฀

import Twit

class TwitAdmin(admin.5฀

ModelAdmin):

 pass

admin.site.register5

(Twit, TwitAdmin)

To see it in action, run

python manage.py runserver

separate from everything else, save this

file in mytwit/ templates/ all_twits.html.

As you can see, the Django template

language has advanced features and is

easy to use. Here you use a simple for

loop to go through each Twit object you

passed in from the alltwits() method and

to display the data via the date and entry

methods on each Twit object in entries.

Now configure Django to find your

template on the file system and set up

a URL that maps to the view. To set up

template directories in mytwit/ settings.

py, you must add the full path to the

TEMPLATE_DIRS list, which depends on

where you ran startproject (be sure to

use the full path). Now edit mytwit/ urls.

py to map the URL (Listing 4).

Here, you have imported your app-

specific views, added a /twits/ URL, and

left the default Django admin mapping

alone. Now if you go to http:// 127. 0. 0.

 1:8000/ twits, you should see all of the

Twits you entered in the admin interface.

Use of the standalone server and

SQLite is great for quick development,

but if you want to build a production

app, you should switch to Apache, mod_

python, and a more robust database

such as PostgreSQL (see the Django

site). Thanks go to Jacob Kaplan-Moss

and Adrian Holovaty for contributing to

this article. Code listings can be down-

loaded from [7]. p

Django Web Framework

40 ISSUE 95 OCTOBER 2008

[1] Django Project Homepage:

http:// www. djangoproject. com

[2] The Django Software Foundation:

http:// www. djangoproject. com/

 foundation

[3] Django-powered sites:

http:// www. djangosites. org

[4] Download Django:

djangoproject. com/ download/

[5] Pysqlite2: http:// initd. org/ pub/

 software/ pysqlite/

[6] The Django Book:

http:// www. djangobook. com

[7] Article Code: http://www.linux-mag-

azine.com/resources/article_code

INFO

Frank Wiles is the owner of Revolu-

tion Systems (http:// www. revsys.

 com), an Internet infrastructure and

web-development consultancy spe-

cializing in scaling and performance-

tuning open source software.T
H

E
 A

U
T
H

O
R

01 <html>

02 <body>

03 <table>

04 <tr>

05 <th>Date</th>

06 <th>Entry</th>

07 </tr>

08 {% for t in entries %}

09 <tr>

10 <td>{{ t.date }}</td>

11 <td>{{ t.entry}}</td>

12 </tr>

13 {% endfor %}

14 </table>

15 </body>

16 </html>

Listing 3:
Building the Template

01 from django.conf.urls.defaults import *

02 from django.contrib import admin

03 from mytwit.Twit import views

04

05 admin.autodiscover()

06

07 urlpatterns = patterns('',

08 (r'^twits/', 'mytwit.Twit.views.alltwits'),

09 (r'^admin/(.*)', admin.site.root),

10)

Listing 4: Map to the URL

038-040_django.indd 40 13.08.2008 16:12:08 Uhr

