
ne would expect Amazon to

guard their infrastructure jeal-

ously, but piece by piece, Ama-

zon has been opening up their infra-

structure so that the rest of us can get

our hands dirty playing with file storage,

virtual servers, and even physical deliv-

eries on the same kind of ludicrous scale

Amazon uses every day.

Amazon Web Services (AWS) makes

these systems available over a web ser-

vices framework so that everything from

using more storage space, to creating vir-

tual servers, to requesting physical deliv-

eries happens over SOAP. Instead of fill-

ing in forms each time you want more,

less, or a different infrastructure, your

code can stay as is and AWS provides the

necessary services as needed.

Each of the Amazon web services

comes with tools developed by Amazon,

and a growing number are developed by

third parties. Increasingly, third parties

are building new and complex services

on top of these basic services – for ex-

ample, hugely scalable databases and

web indexing. Amazon’s “Elastic Com-

pute Cloud” (EC2) provides virtual serv-

ers charged at an hourly rate from US$

0.10 an hour, running on Amazon’s huge

number of servers spread across their

data centers. EC2 gives you computing

in a “cloud.”

The term cloud computing can mean

many different things – from Software as

a Service (SaaS) to highly integrable ser-

vices – but it also means that you don’t

worry about the infrastructure. EC2 runs

on the Xen virtualization layer, but you

don’t have to worry about this – you just

request more virtual servers and they ap-

pear. Cloud computing changes the way

you provision servers because it makes

rapid scaling easier and cheaper at peak

demand times. Instead of spending sev-

eral thousand dollars on five machines

that spend 90% of their lives doing noth-

ing, you can use five EC2 instances only

when you need them.

One of the biggest differences EC2

presents is the use of Amazon Machine

Images (AMIs), which are like server

configurations or perhaps bootable CDs.

EC2 uses these AMIs when it creates a

new virtual server. In this article, I de-

scribe how to create your own AMI.

To start with EC2, set up an AWS ac-

count [1], then go the the EC2 homepage

[2], where you can get the various keys

you’ll need. The easiest way to control

your EC2 instances is with ElasticFox, a

plugin for Firefox. Install ElasticFox from

the Amazon Web Services site [3] and

have a look around. The first step is to

set up a virtual machine. In the center

of the window, you’ll see a list of AMIs.

To create a new instance, select the ap-

propriate AMI and click the I/ O button.

A good place to start is by selecting ec2-

public-images/ fedora-core4-apache-mysql

with the AMI ID ami-25b6534c. The new

instance will appear in the list at the bot-

tom after a few moments. When it says

“running,” right-click on it and copy the

Public DNS into a browser. Now you

should see what looks like a normal web-

site running from your EC2 instance.

A host of AMIs are publicly available

for PHP, Rails, Java, specialized number

crunching, and other uses. The beauty of

using AMIs is that they are honed for a

particular purpose, so when your EC2 in-

stance is running, it doesn’t need any un-

necessary software. This setup is some-

what different from traditional hosting, in

which the server tends to contain all the

software to run all your apps.

Creating an AMI takes a while, which

can make things tricky at first, but once

you have cracked it, the steps are pretty

easy. AMIs can contain anything from a

single service to all your applications

and databases, so all your EC2 instances

will look just like you want them to

look. For example, if you deploy lots of

websites that are based on the same soft-

ware, you can push the software into the

AMI so that you only have to upload the

site itself to the EC2 instance.

Once the working AMI is set up, you

can use it to create as many instances as

Cloud computing systems like Amazon’s Elastic Compute Cloud (EC2) save power and overhead by taking the

peak out of your server load. BY DAN FROST

Cloud Computing

28 ISSUE 95 OCTOBER 2008

028-030_cloud.indd 28 13.08.2008 16:31:54 Uhr

you like. To create an AMI, create a

Linux image containing all the required

files and settings, bundle the image, and

upload it to EC2, then register the up-

loaded image.

The first step is to create the Linux

image in a “loopback file,” which is used

to simulate a hard disk and avoids the

need to create the operating system on a

separate drive. The dd command copies

raw data into a file of a specified size –

in this case, 1GB:

dd if=/dev/zero

of=myimage.fs count=1024

bs=1M

The dd program works in units of

blocks; count is the number of blocks to

be copied and bs is the size of the blocks

to use. Running this produces a com-

pletely empty file, inside which you’ll

create the linux image.

Next, you need to create a filesystem

with mke2fs, which adds an ext3 filesys-

tem in the file you just created:

mke2fs -F -j myimage.fs

If you haven’t created filesystems in

loopback devices before, this step might

seem a bit weird. Think of it like this:

The file myimage.fs_ now contains a file-

system that can be mounted just like an

external hard drive:

sudo mount -o loop

myimage.fs /mnt

This step mounts the filesystem on /mnt.

The -o loop options makes you mount

the filesystem as a loopback, rather than

as a real disk drive. The whole loopback

device arrangement should begin to fall

into place now. Look around /mnt. All

you’ll see so far is the usual ext3

lost+found directory. Now you can cre-

ate files and directories – this filesystem

will hold a small version of Linux to use

on EC2.

To begin your basic OS, you can use

debootstrap, a program that sets up a

basic Debian system on a given filesys-

tem. If you need to install this program,

it is simply a matter of entering apt-get

install debootstrap. If you’re doing this

on another flavor of Linux, the steps are

similar, although you might need to set

up the OS differently, but for the exam-

ple here, run debootstrap:

sudo debootstrap --arch

i386 edgy mnt

While debootstrap runs, you’ll see vari-

ous retrieving and validating messages

as it gets the required files and installs

them in the loopback filesystem. When

the program finishes, have another look

at the filesystem in /mnt. Things should

look familiar. With the next two com-

mands, you finish off this task and move

inside the new Linux image as though it

has been booted all along:

sudo cp /etc/apt/sources.list

/mnt/etc/apt/sources.list

sudo chroot /mnt

mount -t proc none proc

Now that you’re in the image, change

the password:

passwd

What you have now is an empty Debian

image, which has pretty limited use.

With the use of Aptitude, update the

image and install an SSH server:

aptitude update

aptitude upgrade

aptitude install openssh-server

If you’d like Apache, enter:

aptitude install apache2

Next, you should address the network

settings. Note that you’ll edit /etc/net-

work/interfaces in the image – it isn’t

your local machine any more. Use an

 editor to put the following into /etc/net-

work/interfaces

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

and then add the following to /etc/fstab:

/dev/sda2 /mnt ext3

defaults 1 2

/dev/sda3 swap swap

defaults 0 0

Now you’re done with the image, but

you can play around and perhaps install

some software (e.g., subversion, MySQL,

or anything else you use frequently).

When you’re finished, enter:

exit

sudo umount /mnt

Now you have Linux in a file. By this

stage, you can imagine how EC2 will use

this to create instances. Any programs,

code, or files required by your applica-

tions can be added to the new Linux

image at this stage. Anything you add

now will be on every EC2 instance you

create – for example, just copy files di-

rectly into the mounted image. If you

use some standard CMS software, you

might grab a copy for the image: svn co

http://svn.server/my_project/trunk mnt/

var/www/html/my_project

Now you can set up databases, sym-

links, config files, or anything else as

you normally would. When all the files

are set up, your Linux image is ready.

Amazon provides two sets of tools. The

first bundle of software you need is the

AMI Tools package [4], which contains

the tools for creating AMIs and upload-

ing them to Amazon. The second is the

EC2 command-line tools bundle [5],

which performs more generic tasks, such

as creating and controlling EC2 in-

stances. To start, download both files

and extract them into a directory. Al-

though you can install these in a system

directory (/usr/local for example), for

this example, install in the home direc-

tory. With the files in place, set some en-

EC2 comes with a whole stack of keys,

access ids, certificates, and the like:

that identifies all the requests you

make to Amazon’s Web Services.

string that validates the access key.

and a private key.

stances without the need to send your

password in the clear. In the examples

ticFox.

Understanding the Keys

Cloud Computing

29ISSUE 95OCTOBER 2008

028-030_cloud.indd 29 13.08.2008 16:31:55 Uhr

vironment variables. The EC2 software

requires a couple of custom variables:

export EC2_HOME=

~/ec2-api-tools/

export EC2_AMITOOL_HOME=

~/ec2-ami-tools/

For more information on these variables,

see the Readme file ec2-ami-tools/re-

adme-install.txt.

Now, make sure JAVA_HOME is set,

and add the EC2 directories to the PATH

variable.

export JAVA_HOME=

/usr/lib/jvm/cacao/jre/

export PATH=$PATH:

ec2-api-tools/bin:

ec2-ami-tools/bin

To check that everything is working,

enter:

ec2-bundle-image --help

To use your Linux image, you need to

bundle it, upload it to EC2, and register

it. To bundle the image, use the ec2-bun-

dle-image tool, which is provided by

AMI tools:

ec2-bundle-image

 -i myimage.fs

 --cert ec2-keys/cert-XXX.pem

 --privatekey ec2-keys/

 pk-XXX.pem

 -u 1234-2345-1234

This takes your Linux image, splits it

into several files, and creates a manifest

file, which tells EC2 where your image

is hosted in Amazon Simple Storage

 Services (S3) and how to use it. The split

image files are created in /tmp/ by de-

fault – have a look once the ec2-bundle-

image process is complete.

Next, upload the image with the ec2-

upload-bundle tool, which takes all the

files you just created on your local ma-

chine and uploads them to S3:

ec2-upload-bundle

 -b my-image \

 -m /tmp/myimage.

 fs.manifest.xml

 -a access-key-here

 -s secret-key-here

 --ec2cert ~/test1518.pem

This might take some time, so make

sure your terminal won’t timeout while

you’re waiting (e.g., use screen). After

the upload has completed, look in your

S3 account and notice that the bucket

named my-image contains the files that

you created with ec2-bundle-image.

Your Linux image is now sitting on S3

with a manifest file.

The last step is to register and use the

Linux image:

ec2-register

 my-ubuntu-df/

 myimage.fs.manifest.xml

 -K ~/.ec2/pk-XXXX.pem

 -C ~/.ec2/cert-XXXX.pem

Note that ec2-register refers to the mani-

fest file on S3, not on your local machine

– hence, the path my-ubuntu-df/myim-

age.fs.manifest.xml. Also, you can regis-

ter through ElasticFox by clicking the

green plus icon in the AMI listing and

entering the path to the manifest file.

To use the image, fire up ElasticFox,

refresh the list of AMIs, and find your

new AMI using the filter box to the top

right of the AMI list. Create a new in-

stance of the AMI, and there you have it:

You’re running your own Linux image

on EC2 for US$ 0.10 an hour.

Once the instance is running, ssh onto

it and play around. Very quickly you’ll

decide what software and content files

you want on all your EC2 instances, and

you can then push the files and pro-

grams into your AMI using the steps I

took you through above.

If you think your image is really good,

you can share it for free or charge others

for the use of it through Amazon.

Like any new technology, cloud comput-

ing is fun to play with, but you’ll like it

even better if you can get some really

good use out of it.

So, what is EC2 good for?

Cloud computing makes it easier to

throw vast amounts of hardware at a

problem without having to worry about

the details of hosting, networking con-

nectivity, cooling, or the boredom of 100

hosting contracts. This makes EC2 great

for anything that requires lots of servers

– processing millions of images, search-

ing and cataloging tasks, and so on.

Anything that can be done quicker by

throwing more computing power at it

can use EC2.

And because you can requisition serv-

ers on the fly, cloud computing is good

for time-sensitive tasks, such as sending

hundreds of items of email over lunch

or preparing lots of video files while the

user waits. Scaling on the fly means

you don’t have dozens of servers sitting

around doing nothing (and costing you

money).

The cloud is also suited to any service

that might need to scale, but you don’t

know the number of end users – for ex-

ample, social networks, intranets, extra-

nets, or online applications. Also, you

can use EC2 to test new server configu-

rations, and you can use the cloud to test

applications [6].

Cloud computing is set to change the

way applications are built and deployed.

Anything that is impossible now because

you can’t afford the servers becomes

wonderfully possible – or at least much

cheaper. Creating custom AMIs will

allow you to get the most out of the ser-

vice by launching EC2 instances fine-

tuned for your particular applications.

Building and uploading images can take

time, but once you have them, it is easy

to tweak the images to contain exactly

what your applications need and no

more.

And once you can create 1,000 copies

of your application, you can stop worry-

ing about those server loads. p

[1] Creating an AWS account:

https:// aws-portal. amazon. com/ gp/

 aws/ developer/ registration/ index.

 html

[2] EC2 homepage:

http:// www. amazon. com/ ec2/

[3] Amazon web services: http://

 developer. amazonwebservices. com/

 connect/ entry. jspa? entryID=609

http:// developer. amazonwebservices.

 com/ connect/ entry. jspa?

 externalID=368& categoryID=88

http:// developer. amazonwebservices.

 com/ connect/ entry. jspa?

 externalID=351& categoryID=88

[6] Selenium:

http://selenium-grid.openqa.org/

INFO

Cloud Computing

30 ISSUE 95 OCTOBER 2008

028-030_cloud.indd 30 13.08.2008 16:31:55 Uhr

