
atabases and conventional data

structures are not always a per-

fect solution for web develop-

ment. A web application, such as a staff

portal on an intranet, for example, has

specific requirements for how and when

users can access the data. Users have

different needs with respect to the data

as well. For example, some are interested

in targeted content searches, whereas

others want to be notified when signifi-

cant events occur, and all users need

 access privileges to modify content.

To put it in more general terms: Sim-

ply providing content is not enough. To-

day’s users – and today’s web develop-

ers – expect that various services will ac-

company the content. For example, web

applications often rely on access con-

trols, search functions, and versioning,

and, although the developer could build

these functions into the application from

scratch, the economies of the program-

ming profession cry out for a more effi-

cient approach.

The idea behind the Content Reposi-

tory API for Java Technology (JCR) is to

abstract data-related services from the

underlying application and use a stan-

dard API to access these service. A con-

tent repository avoids the need to con-

tinually re-implement data services with

each application. Instead, the applica-

tion simply calls a function through the

repository API.

A content repository combines some

of the advantages of a filesystem and

a database. As a filesystem, it supports

 hierarchical storage of unstructured files

and permissions for access control. As

a database, it supports storage of struc-

tured data, queries, transactions, and in-

tegrity checks. Content repositories also

support features such as versioning and

change management (Figure 1).

The full specification for the Content Re-

pository standard is an excellent starting

point if you want to get to know the Java

Content Repository API [1]. The idea is

that the definition of a repository is inde-

pendent of the underlying data sources,

protocols, and architecture. The API is

split into two levels. Level 1 provides

basic functionality for read access, and

level 2 addresses issues related to modi-

fying stored data.

The JCR reference implementation

was created by Day Software and then

handed over to the Apache Software

Foundation. This implementation has

since become a successful open source

project that goes by the name of Apache

Jackrabbit [2]. An active community has

grown around the project and continues

to push its development. The Jackrabbit

repository is a full-fledged implementa-

tion of the standard, with a full set of

level 1 and level 2 functions. Jackrabbit

also adds several extra features, such as

the ability to set up a repository cluster.

A web application included with Jack-

rabbit supports the first few steps of de-

fining a content repository. This web app

provides an interface that gives users the

ability to set up new repositories.

Apache Jackrabbit supports access to

the repository via WebDAV, which makes

it easy to mount the repository, copy any

kind of files to it, create directories, and

manage the repository contents.

Figure 2 shows an overview of the re-

pository model: It has a simple, hierarchi-

cal structure as a tree with n levels. The

central instance is the repository, which

can contain one or multiple workspaces.

In turn, each workspace contains a tree of

items, wherein each item is either a node

Speed up your web development

with Jackrabbit, an open source

implementation of the Java Con-

tent Repository standard.

BY CARSTEN ZIEGELER

Java Content Repository

31ISSUE 94SEPTEMBER 2008

or a property. A node can have child

nodes, and 0 to n properties that store the

data (see the “Types” box). A property is

typed and contains a data type (string,

number, binary string, and so on).

Nodes allow hierarchical data storage

of, say, digital photos below a photos

node. Other nodes in the repository rep-

resent photo albums, which can also

contain sub-al-

bums. For in-

stance, all photos

taken in the year

2008 in Amster-

dam might reside

below /pho-

tos/2008/Amster-

dam. Each item,

whether a node or

a property, can be

uniquely accessed

via a path starting

at the repository

root. Below the

Amsterdam node

are photos, and

each photo has its

own node. But a

content repository

is more than an

ordinary collec-

tion of files and directories. The proper-

ties belonging to the individual nodes

can include parameters useful to a web

application, such as the binary stream

for the image, as well as parameters

such as the photo date and location. It is

up to the developer to structure the data

in the repository in the best way for the

application. The Jackrabbit documenta-

tion and the wiki [3] offer tips and tricks

for content modeling.

Interacting with the repository requires

a couple of initial steps: Application pro-

grammers first have to set up a connec-

tion to the repository and then create a

session for an individual user. All further

actions use the session. The first step for

accessing the repository is not defined by

the standard. Depending on how the in-

frastructure is implemented, Apache

Jackrabbit offers various approaches. One

approach uses the Java Naming and Di-

rectory Interface (JNDI). The code in List-

ing 1 creates a session for a fictional user.

Developers can use the session to

query and modify nodes. In case of

changes, the repository does not save

them itself; instead, a message is sent to

the session, which means that multiple

changes can be saved at the same time.

On top of this are explicit transactions.

The code in Listing 2 queries a node (i.e.,

/photos/2008) in a repository. Below this

node, it creates a new Amsterdam node,

assigns properties, and saves the changes.

The API supports a search function via

SQL or XPath to support complex que-

ries. To track changes to the repository,

reference the EventListeners registered

with the session. Users can specify

which parts of the repository to monitor

during the registration process and re-

strict notification to specific types and

changes. With the last feature, it is easy

to launch a specific workflow for a spe-

cific type of content in the repository.

Different applications or their compo-

nents can thus react to each other flexi-

bly while remaining loosely connected.

For example, many application could

store images in the same photo album.

01 InitialContext jndiContext = ...

02 Repository repository = (Repository)jndiContext.

lookup("MyRepository");

03

04 // Create Credentials

05 Credentials credentials = new SimpleCredentials(

06 "carsten", "secretpassword".toCharArray());

07

08 // Open a session

09 Session session = repository.login(credentials, "Workspace A");

Listing 1: Accessing the Repository

The best of both worlds

Database

Content Repository

Structure

Integrity

Search

Read

Write

Access Control

Hierarchy

Binary DataTransactions

Unstructured Observations

Full Text Search

Versioning

Exclusive Access

Filesystem

01 // Retrieve album "/photos/2008"

02 Node knoten = (Node)session.getRootNode().getNode("photos/2008");

03 // Create new album

04 Node album = node.addNode("Amsterdam");

05 // Add property

06 album.setProperty("Description", "Photos from Amsterdam");

07 album.setProperty("public_readable", true);

08

09 // and finally save

10 session.save();

Listing 2: Reading and Writing in the Repository [1] Java Specification Request 170:

http:// www. jcp. org/ jsr/ detail/ 170. jsp

[2] Apache Jackrabbit:

http:// jackrabbit. apache. org

[3] Apache Jackrabbit wiki: http:// wiki.

 apache. org/ jackrabbit/ FrontPage

[4] Apache Sling project:

http:// incubator. apache. org/ sling

[5] Java Specification Request 283

http:// jcp. org/ en/ jsr/ detail? id=283

[6] REST explained: http://www.xfront.

com/REST-Web-Services.html

INFO

Java Content Repository

32 ISSUE 94 SEPTEMBER 2008

The new Apache Sling framework [4] is based on a content

repository for REST-based applications. Each browser query is

matched with content in the repository, and a script for dis-

playing the content is selected in a second step.

Version 2 of the standard is currently under construction as

JSR 283. The new standard, which is planned for a 2008 re-

lease date, will include a number of extensions. The major

focus is on improving repository management and adminis-

trative functionality. For example, the current standard does

not concern itself with access control and the type manage-

ment of nodes. JSR 283 will close these gaps [5].

The JCR project has made the name JCR synonymous with

content repository. A content repository is deployed as an in-

frastructure with defined services. Users only need to concern

themselves with the application, and a single application can

easily access different content repositories.

The flexibility of JCR is an enormous boon for developers,

in that programmers can learn a single API suited to a variety

of appli cation cases. In addition, Jackrabbit removes depen-

dencies on vendors and reduces the cost of migration. p

Each node has exactly one primary type. This type defines the

node structure, for example, specifying which properties or

children the node can possess. Besides the primary type, a

node can have any number of mixins. A mixin is also a type

definition that can add properties to any node. Each application

can define its own types. The combination of multiple inheri-

tance and mixins supports extremely flexible and precise type

definition. The standard defines a number of types, such as

nt:unstructured, with which arbitrary trees made of nodes

and properties are permitted.

It is generally a good idea to use existing types and then add

your own requirements. For a photo album, this would mean

using an existing type such as nt:folder, which describes a di-

rectory, with your own mixin that contains additional informa-

tion for the album. At the same time, images could use nt:file

and a mixin for special photo data. The use of standard types

also offers the advantage of helping third-party applications

handle the data more easily.

Types

