
Should I buy the digital camera
that caught my eye recently?
Should I wait until the price

drops? These questions are difficult to
answer, but a glance at the price devel-
opments over the past few months could
tell you where the prices are heading.

Price History
If Amazon offered a price history for its
products – something similar to the
share prices on major financial pages –
customers might be annoyed about miss-
ing bargains. Or they might speculate on
prices continuing to drop and wait for a
more favorable opportunity. The online

shopping site does not offer this service
yet, so you’ll have to set it up yourself.

Prices in the Box
Today’s script, amtrack [1], parses an
~/.amtrack‑rc configuration file, much
like that in Figure 1, to discover the
products the user wants. A cronjob calls
the script at regular intervals. Each time
the script connects to the Amazon web
service, it queries the prices of the con-
figured articles and stores them in a local
SQLite database.

If the price of a product
drops, the script sends an
email with the product’s URL
and the current price to the
address configured in line 97.
All that’s left for the bargain
hunter to do is click the URL
in the email client, take an-
other look at the product in
the browser, and maybe snap
it up on the spot.

Because the prices are
stored locally in a database,

the script can query and display histori-
cal data at the drop of a hat. A call to
amtrack ‑l returns the latest prices for all
monitored products (Figure 2). If you are
interested in the complete content of the
database, you can set the ‑a flag, but be
aware you will probably see a lot of out-
put if you have been running the price
monitor for a longer period of time and
have been watching several products.

When launched without any com-
mand-line options, amtrack works its
way through the product shortcuts de-

If you are a bargain hunter, you might enjoy this Perl script that monitors price developments at Amazon and

alerts you if Amazon suddenly drops the prices on the products you have been watching.

BY MICHAEL SCHILLI

Perl scripts watch Amazon prices

BARGAIN
HUNTER

Figure 1: The ~/ .amtrack‑rc configuration file lists the

specific products and their ASIN numbers.

Michael Schilli works
as a Software Devel-
oper at yahoo!,
Sunnyvale, Cali for -
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
 contacted at mschilli@ perlmeister.
com. His homepage is at
http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R
V

a
siliy

 Y
a
ko

b
ch

u
, Foto

lia

PrograMMIngPerl: amtrack

75ISSUE 92July 2008

fined in the ~/.amtrack‑rc configuration
file and updates the database with the
latest prices.

Wish List
The configuration file has two columns.
Column one contains the ASIN number
for the product in question, with a short
product description to its right, sepa-
rated by one or multiple blanks. This
doesn’t make any difference to the data-
base, but it makes the alert email easier
to read.

Comment lines start with a pound sign
(#), and the script ignores them, just as
it ignores blank lines. The config_read()
function (Listing 1, lines 113-136) loads
the configuration and returns two refer-
ences: one to the ordered Array @config,
and one to the %config hash. The array
contains pairs of ASIN and text values,
whereas the hash directly maps ASINs to
texts for quick look-ups.

Bargain Basement
The CPAN Net::Amazon module pro-
vides an object-oriented interface to
Amazon’s REST-based web service. If
you enter the ASIN number for a prod-
uct, the module contacts Amazon and
retrieves the price.

When it started, Amazon only sold
books, which can be uniquely identified
by their ISBN numbers. As the product
portfolio grew, Amazon added the ASIN
number, which has a similar structure
but also includes letters and is thus ca-
pable of addressing far more products.

The request() method
of the Net::Amazon class
accepts a Net::Amazon::
Re-quest::ASIN object with
parameters that include the
ASIN number for a product.
After doing so, it handles
communications with the
Amazon web server and
returns a Net::Amazon::
Response::ASIN class object.
The object’s is_success()
property tells you whether
the request has worked. If
so, the properties() method
returns a single Net::
Amazon::Property class object
that contains the matching
product, including a product
description, customer ratings,
URLs to images, and much

more, including the price. Amazon offers
different search options – by author, for
example – so properties() can also return
multiple entries. The OurPrice() method
of a property returns the current price of
the product formatted $X.XX, £X.XX (for
the UK), or EUR X,XX (for other Euro-
pean locations; see below).

Historical Cache
The script also relies on the CPAN
Cache::Historical module, which not
only stores data under a primary index,
like any normal cache, but also inserts
a date that it then uses as a secondary
index. The script stores the product
prices, with the ASIN as the
primary index, and saves the
retrieval date to the cache.
Under the hood,
Cache::Historical relies on the
file-based SQLite database,
which the module lists as a
requirement and which it
also installs thanks to the
CPAN shell. The new() con-
structor’s sqlite_file para
meter sets the name for the
~/.amzn‑tracker‑sqlite file
into which the database is
dropped. If you like, you can
query the SQLite database
with the sqlite3 client pro-
gram to view the data, as
shown in Figure 3.

The get_interpolated() call
for the cache retrieves the da-
tabase value for a specified

date (the current date in the script) and
a specific key (the ASIN for a product).
The script stores this in the $last_price
variable and then updates the database
with the latest value from the Amazon
website. After doing so, it retrieves the
current price from the database again
and compares it with the $last_price.

In contrast, the values() method re-
turns a list of pairs of values that match
the specified key. Each pair is a reference
to an array that contains the date as a
DateTime object and the price.

Do What I Mean
If the current price of a monitored prod-
uct is lower than the last price stored in
the database, the script dispatches an
email in line 96 (Figure 4). Although
many CPAN modules can send email,
Mail::DWIM (Do What I Mean) is one of
the simplest: It exports the mail() func-
tion, which accepts a recipient, a subject
line, and the body text of the mail as
parameters. It sets meaningful defaults
for the remaining parameters, such as
the sender or the mail transport (in this
case, the active user plus the configured
domain and the active Sendmail dae-
mon). For other mail transport mecha-
nisms, it also supports SMTP with a mail
host specification. These defaults are set
as parameters in a local .maildwim file.
For more details about this, just read the
Mail::DWIM man page.

The email also contains the URL for
the product, which is achieved by add-

Figure 2: When called with the ‑l option, the amtrack

script lists the current prices of all the products it is

watching.

Figure 3: The SQLite database can also be queried with

the sqlite3 command-line client.

Figure 4: An email arrives announcing that the price of

the Roomba [4] vacuum cleaner robot has dropped by

US$ 10.

Figure 5: The Log4perl configuration for the script.

Perl: amtrackProgramming

76 ISSUE 92  July 2008

ing /dp/$asin to the base URL for the
Amazon website.

Professional Logging
To keep the user current with what the
script is doing, it uses Log4perl to log its
activities. The amtrack.l4p file, which
initializes Log4perl, is stored in the same
directory as the script (Figure 5). To
allow the script to find the configuration
file, even if called from a different direc-
tory (e.g., as bin/amtrack or as amtrack
from the home directory), the FindBin
module helps by exporting the $Bin
variable as the directory the script was
found in, thus making sure that $Bin/
amtrack.l4p will represent the absolute
path to the Log4perl configuration.

The Log4perl configuration
is not exactly easy; after all,
you want the script to write
regular activities to the logfile
(Figure 6) but display errors
at the console.

A cronjob called at regular
intervals will just keep ap-
pending to the logfile (by de-
fault), but it will send errors
(such as a failed network
connection) to STDERR and thus cause
cron, which launched the script, to mail
the admin.

A single logger is defined for the main
category (i.e., for the main program).
Net::Amazon is also Log4perl-enabled,
and another entry in the configuration

file would quickly send details of com-
munications with the Amazon web
server to the screen. The main logger
controls two appenders: Logfile and
Screen. To make sure that Screen only
receives messages with ERROR priority
or higher, the line

001 �#!/usr/bin/perl ‑w

002 �use strict;

003 �use Getopt::Std;

004 �use Net::Amazon;

005 �use

006 � Net::Amazon::Request::ASIN;

007 �use Log::Log4perl qw(:easy);

008 �use Cache::Historical 0.02;

009 �use DateTime;

010 �use Mail::DWIM qw(mail);

011 �use FindBin qw($Bin);

012

�013 �my ($home) = glob "~";

014 �my $amzn_rc =

015 � "$home/.amtrack‑rc";

016

�017 �Log::Log4perl‑>init(

018 � "$Bin/amtrack.l4p");

019

�020 �my $cache =

021 � Cache::Historical‑>new(

022 � sqlite_file =>

023 � "$home/.amtrack‑sqlite");

024

�025 �my $UA = Net::Amazon‑>new(

026 � token => 'YOUR_AMZN_TOKEN',

027 � # locale => 'uk',

028 �);

029

�030 �my ($config, $txt_by_asin) =

031 � config_read();

032

�033 �getopts("al", \my %opts);

034

�035 �if ($opts{l} or $opts{a}) {

036 � for my $key (

037 � sort keys %$txt_by_asin)

038 � {

039 � my $txt =

040 � $txt_by_asin‑>{$key};

041 � for my $val (

042 � $cache‑>values($key))

043 � {

044 � my ($dt, $price) = @$val;

045 � print "$dt $txt $price\n";

046 � last if $opts{l};

047 � }

048 � }

049 �} else {

050 � update($config);

051 �}

052

�053 �#############################

054 �sub fix_price {

055 �#############################

056 � my ($price) = @_;

057

�058 � if (defined $price) {

059 � $price =~ s/[^\d]//g;

060 � $price =~ s/..$/.$&/g;

061 � }

062 � return $price;

063 �}

064

�065 �#############################

066 �sub update {

067 �#############################

068 � my ($config) = @_;

069

�070 � for my $line (@$config) {

071

�072 � my ($asin, $txt) = @$line;

073 � my $now = DateTime‑>now();

074

�075 � my $last_price = fix_price(

076 � $cache‑>get_interpolated(

077 � $now, $asin

078 �)

079 �);

080

�081 � track($asin, $txt, $cache);

082

�083 � my $price_now = fix_price(

084 � $cache‑>get_interpolated(

085 � $now, $asin

086 �)

087 �);

088

�089 � if (defined $last_price

090 � and defined $price_now)

091 � {

092

�093 � if (

Listing 1: amtrack

Figure 6: Excerpt from the logfile after a successful

script run.

PROGRAMMINGPerl: amtrack

77ISSUE 92July 2008

log4perl.appender.Screen.U
Threshold = ERROR

sets this threshold in the appender defi-
nition.

If you would like to learn more about
the Log4perl framework, check out the
Log4perl homepage [2], which has ex-
haustive documentation and a FAQ with
frequently used sample configurations.

Not Without My Token
Amazon requires a token from scripts
that mess around with its web service;
the token is free to anybody who regis-
ters and accepts the conditions [3]. After
receiving the token, just replace YOUR_
AMZN_TOKEN in line 26 with the cor-
rect token.

The script will work with the US web-
site or with that of any subsidiary, such
as the UK site. For the latter, you just
need to uncomment locale => 'uk' in
line 27.

For other European locales, prices
might be displayed in the EUR X,XX for-

mat, but the fix_price function converts
them into proper floating point format,
which you can compare with the use of
numeric operations.

Because US figures use both a dot as
the floating point, and commas to sepa-
rate thousands, fix_price() simply
ditches everything that is not a digit and
inserts a decimal point in front of the
last two digits.

Installation
A CPAN shell installs the CPAN modules
specified at the start of the script, imme-
diately resolving all the dependencies at
the same time.

A crontab entry of the format

23 0 * * * /path/to/amtrack

calls the script once a day at 23 minutes
after midnight. This should be more
than enough snapshots to keep you up
to date. The Net::Amazon module makes
sure that the script keeps to Amazon’s
conditions of use, and rate-limits itself if

the user retrieves prices at too short an
interval.

Extensions
To extend the script, you could assign a
limit for each price in the configuration
file and tell the script not to notify you
unless the price drops below this value.
Another application would be to draw
a graph of price changes over an period
of time; the CPAN RRDTool::OO or Ima-
ger::Plot modules are perfect for this. n

094 � $price_now < $last_price)

095 � {

096 � mail(

097 � to => 'foo@bar.com',

098 � subject => "[amtrack] "

099 �#############################

100 � . "$txt cheaper ("

101 � . "$price_now < "

102 � . "$last_price)",

103 � text => "URL: "

104 � . "http://amazon.com"

105 � . "/dp/$asin",

106 �);

107 � }

108 � }

109 � }

110 �}

111

�112 �#############################

113 �sub config_read {

114 �#############################

115

�116 � my @config = ();

117 � my %config = ();

118

�119 � open AMZNRC, "$amzn_rc"

120 � or die

121 � "Cannot open $amzn_rc";

122 � while (<AMZNRC>) {

123 � s/#.*//;

124 � next if /^\s*$/;

125 � chomp;

126 � my ($asin, $txt) =

127 � split ' ', $_, 2;

128 � push @config,

129 � [$asin, $txt];

130 � $config{$asin} = $txt;

131 � }

132 � close AMZNRC;

133

�134 � return \@config, \%config;

135 �}

136

�137 �#############################

138 �sub track {

139 �#############################

140 � my ($asin, $txt, $cache) =

141 � @_;

142

�143 � INFO "Tracking asin $asin";

144

�145 � my $req =

146 � Net::Amazon::Request::ASIN

147 � ‑>new(asin => $asin);

148

�149 � my $resp =

150 � $UA‑>request($req);

151

�152 � if ($resp‑>is_success()) {

153 � my ($prop) =

154 � $resp‑>properties();

155 � my $price =

156 � $prop‑>OurPrice();

157 � INFO "Tracking $asin ",

158 � "($txt): $price";

159 � $cache‑>set(

160 � DateTime‑>now(), $asin,

161 � $price)

162 � if $price;

163 � } else {

164 � ERROR

165 �"Can't fetch asin $asin: ",

166 � $resp‑>message();

167 � }

168 �}

Listing 1: amtrack

[1]	�L istings for this article:
ftp://​www.​linux‑magazin.​com/​pub/​
listings/​magazine/​92/​Perl

[2]	�L og4perl homepage:
http://​log4perl.​com

[3]	� Amazon Web Services tokens are
available from:
http://​www.​amazon.​com/​soap

[4]	� The Roomba vacuum robot:
http://​www.​amazon.​com/​iRobot‑Roo
mba‑Intelligent‑Floorvac‑Robotic/​
dp/​B00008439Y

INFO

Perl: amtrackProgramming

78 ISSUE 92  July 2008

