
The Linux kernel
mailing list com-
prises the core of
Linux development
activities. Traffic vol-
umes are immense,
often reaching ten
thousand messages
in a given week, and
keeping up to date
with the entire scope of development
is a virtually impossible task for one
person. One of the few brave souls to
take on this task is Zack Brown.
Our regular monthly column keeps
you abreast of the latest discussions
and decisions, selected and summa-
rized by Zack. Zack has been publish-
ing a weekly online digest, the Kernel
Traffic newsletter for over five years
now. Even reading Kernel Traffic alone
can be a time consuming task.
Linux Magazine now provides you
with the quintessence of Linux Kernel
activities, straight from the horse’s
mouth.

zack’s Kernel News
Status of the 2.2 Kernel
Back in August 2007, Xose Vazquez
Perez asked about the status of the
2.2 kernel tree and noted that version
2.2.26 had been released way back on
February 25, 2004. On the other hand,
the latest release candidate for 2.2.27
was from January 12, 2005. Willy Tar-
reau replied that any new release of the
2.2 kernel tree might lead users to be-
lieve that it was usable. However, he
pointed out that, by now, a lot of secu-
rity fixes have not gone into that tree,
and it is simply too far out of date to
continue to maintain.

Xose accepted this explanation at the
time, but recently he followed up, sug-
gesting that the 2.2 kernel be removed
from the front page of kernel.org. If it is
so out of date that no one should use it
or patch it, he argued, it clearly
shouldn’t be advertised on kernel.org.
This seems to make some sense; how-
ever, at the time of this writing, the 2.2.
kernel is still listed on kernel.org with
the rest of the kernel trees.

Cute Way to Schedule Code
Removal
Matthew Wilcox had a nifty idea to
save Andrew Morton a little headache.
The current list of kernel features that
are scheduled for removal is kept in a
single file called feature‑removal‑sched‑
ule.txt. As part of innocently going about
their business, kernel hackers who want
to schedule a feature for removal have
naturally added their items to the bot-
tom of that file. The problem is that
everyone then submits their changes
to that file as a patch, so all the patches
conflict with each other because they
are all attempting to add different text
at the same place in the file. As a result,
Andrew has apparently been resolving
these conflicts by hand, which is annoy-
ing for him.

Matthew’s idea for helping Andrew is
to trick the kernel patching tools into
inadvertently doing the right thing. For
example, the diff tool produces a patch
that contains lines of context around the
patches it produces so that the patch tool
can apply a patch at the proper location
in a file. The diff tool also keeps track of
the “before and after” state of the part of
the file being modified, but because the
changes Matthew is talking about are
only adding text, the “before” state is
empty.

Given this, his idea is to put a simple
separator, like “——————”, between
entries and, most importantly, at the
bottom of the file. By doing this, the diff
tool will not only have no “before” state
for its patch, but it will also only have
this generic separator to provide context
for its patches. As Matthew points out,
this will cause the patch tool to insert
each new entry randomly between any
two adjoining entries in the file.

That’s a neat trick, and it’s nice when
a neat trick can save somebody time.
Ironically, the git tool would not make
the same mistake as diff and patch, but
because Andrew doesn’t yet use git for
this side of his kernel work, this little so-
lution can slip through the cracks and
just work.

New General Debugging
Code
Thomas Gleixner has proposed a cool
new debugging infrastructure for the ker-
nel. His idea is to keep a hashed list of
kernel objects and perform sanity checks
on them whenever they are touched or
memory is freed so that red flags are iden-
tified before a bug can cause kernel panic
or other bad consequences. These sanity
checks wouldn’t find all bugs, but when
they did throw a red flag, it would almost
certainly be because they detected a legit-
imate bug somewhere.Thomas’s plan
would be to keep the debug code in the
kernel, where it could be enabled easily.
The kernel wouldn’t run with the debug
code enabled by default because that
would slow the whole system down.

Initial support for Thomas’s work was
good, and Greg Kroah-Hartman sug-
gested some additional sanity checks.
Andi Kleen also suggested incorporating
the features of an old patch by Chris
Mason, in which a background thread
would allocate memory, mark it, and
then check periodically to see whether it
had been corrupted. Because the mem-
ory would only be used for testing, any
code that corrupted it would not neces-
sarily cause an immediate problem for
the running system, so detecting the cor-
ruption would give the user precious
debug information that could be stored
in logs before any potential problem.

It’s very likely that Thomas’s work will
be accepted into the kernel at some point,
and it will probably continue to be ex-
tended by these and other suggestions.

Distributing I2C
Maintainership
Jean Delvare put out a call for someone
to be his co-maintainer of the I2C sub-
system. He’d been having trouble keep-
ing pace with the rapid pace of patch
submissions and figured perhaps an-
other set of eyes would help. A couple
of weeks later, he announced that Ben
Dooks had agreed to take on the role,
and he submitted a patch to the MAIN-
TAINERS file including the new listing.

KERNEL NEWS

14 ISSUE 91

When Linus Torvalds wrote git, he
was aiming for the equivalent of a
“system call” layer for revision control.
His application provided the very low
level features for manipulating changes
in a directory that met the needs he’d
identified for himself after BitKeeper
was no longer available. In fact, he
saw git as an improvement over Bit-
Keeper because it removed features
he saw as unnecessary and enabled
other features that BitKeeper hadn’t
been able to provide, like sane tagging
semantics.

Right from the start, the git program
was hard to understand because it didn’t
provide the kind of full-service features
everyone expects from a revision control
system. Instead of users just being able
to type a single command to synchronize
their repository with the one upstream,
for example, they had to first “fetch”
the changes from that repository and
then “merge” them into their local

repository with another command.
Other less common actions were even
more complex to perform. Linus did
this to keep the operations flexible and
powerful. They were not intended to be
used as the front end to a repository. He
expected and encouraged other people
to script their own user-friendly com-
mands on top of the git “system call”
interface.

The first and most popular of the
scripted interfaces to git was the Cogito
application, and for a while, it seemed as
though Cogito would become the main
tool ordinary users would use in con-
junction with git. It can be difficult to
keep track of the status of these sorts of
projects, but it now turns out that Cogito
is no longer maintained, and git itself
will provide both the back-end power
layer and the friendly front end for
regular users.

The git front end has actually been
under development for a while and

is called the “porcelain” layer. It pro-
vides a command set familiar to most
version control users and relies on
the lower level commands for its imple-
mentation. In the course of helping
someone who’d had trouble with a git
repository and had described the Cog-
ito commands that had revealed the
problem, Linus told him, “First off, you
really should lay off the cogito thing,
it’s pretty much guaranteed that any
cogito usage will just be harder and
less likely to be correct than just using
native git (and almost nobody will be
able to help you any more – it’s not
like it’s been maintained for the last
year).”

With git providing its own front end
and Cogito no longer maintained, it
looks like anyone who’s been relying
on Cogito should switch to using git
directly. Anyone relying on any other
version control system should also
switch to git. It’s way cool.

Time for Cogito Users to Switch to git

Linux Magazine Exclusive

KERNEL NEWS

