
59

A thin client is often an attractive
option for server-based comput-
ing environments. Thin clients

save on hardware and administrative
overhead by minimizing client configu-
ration and concentrating resources on
the server side. The very versatile Linux
is an excellent option for a thin-client
operating system; however, because one
of the primary reasons for a thin client is
to save administration time, it is impor-
tant for the thin client to be as close as
possible to an ordinary Linux computer.
The root filesystem configuration, for in-
stance, should resemble as closely as
possible the configuration for a normal
Linux system.

One way to reach this goal is by the
use of a translucent filesystem, which
combines the contents of separate file-
system branches into a single virtual file-
system. In the case of a diskless client,
one branch could be an NFS-based direc-
tory located on the server, and the other
branch could be a local filesystem stored
on a RAM disk. The NFS server exports
the root directory to all clients for read-

only access. Local file modifications in
/etc, /var, or /media are then copied to a
RAM disk by the translucent filesystem.

Unionfs [1] is perhaps the most popu-
lar translucent filesystem; however,
Unionfs builds on the FiST framework,
and this adds a great deal of complexity.
Although the performance effects are
typically not too serious, Unionfs has
other problems.

AuFS [2] is an alternative translucent
filesystem. Knoppix version 5.1 and

newer dropped Unionfs in favor of AuFS,
which was programmed from scratch
and does not share its code base with
Unionfs, although it provides similar
functionality. AuFS stability and perfor-
mance are better than Unionfs, although
Linux distributions have not gotten
around to building binary packages.

In this article, we describe a method
for configuring a Linux thin client with
the use of AuFS and an NFS-based per-
sistent cache for better performance.

AuFS offers a painless filesystem for a thin client, and FS-Cache provides a persistent cache.

BY WILHELM MEIER, ANDREAS BANDNER, AND TORSTEN KOCKLER

Configuring the AuFS filesystem for terminal clients

TRANSLUCENCE

KNOW-HOWAuFS

59ISSUE 85 DECEMBER 2007

Figure 1: Interaction between FS-Cache components.

NFS Server
FSN

Network

NFS Client

NFS

FSA

Page Cache
User

Application

cachefilesd

FS
 C

ac
he

/local/fscache

C
h

ristia
n

 K
u

d
ler, p

h
oto

ca
se.co

m

The FS-Cache [3] project supports
the establishment of a persistent cache
for network filesystems (Figure 1). FS-
Cache, which only works for AFS and
NFS right now, comprises multiple com-
ponents, starting with a couple of
patches for the Linux kernel that stand
a good chance of making their way into
the official kernel in the near future.
Also included is a cache back-end and
a modified mount program that under-
stands the fsc option, which announces
the use of a cache later.

The cache back-end has two options:
cachefilesd and cachefs. The cachefilesd
option uses an ext3 filesystem as its per-
sistence layer, whereas cachefs uses a
block device as the cache. The cachefs
algorithm tends to fragment the block
device over time, which means major
performance hits. The developers them-
selves advise users not to opt for cachefs.

Integrating AuFS
AuFS includes a kernel module and user-
space tools. Kernel versions as of 2.6.19
additionally require an uncritical patch if
one branch of the union resides on an
NFS filesystem. Another uncritical patch
exports a kernel function for reasons of
efficiency. The command

cvs -d :pserver:anonymous@U
aufs.sourceforge.net:U
/cvsroot/aufs co aufs

identifies the current version in the aufs
subdirectory. In the makefile, local.mk,
you need to modify the following lines
for the patches referred to earlier:

CONFIG_AUFS_LHASH_PATCH = y
...
CONFIG_AUFS_KSIZE_PATCH = y

The following patch commands update
the kernel sources:

cd /usr/src/linux
patch -p0 < U
/root/aufs/lhash.patch
patch -p0 U
< /root/aufs/ksize.patch

Then, you can go on to install the kernel
in the normal way. At the same time,
you can create the aufs module:

cd /root/aufs
make KDIR=U
/usr/src/linux -f local.mk
cp aufs.ko U
/lib/modules/2.6.19/fs/
depmod -a 2.6.19

After rebooting to the new kernel, you
can use AuFS. The following command
creates a union between the /tmp
/readwrite and /tmp/readonly directories
and mounts the union in /tmp/aufs:

mount -t aufs -o U
dirs=/tmp/readwrite=U

rw:/tmp/readonly=ro U
none /tmp/aufs

As you can see, AuFS is a direct replace-
ment for any application for which you
have used Unionfs with a diskless client.

Cache as Cache Can
Setting up FS-Cache is a slightly more
involved process. Besides the kernel
patches, you will need, as a minimum,
a patched mount.nfs program and the
cache back-end daemon cachefilesd.

To begin, you can download the kernel
patches for kernel version 2.6.19 [4],
then unpack all the patches in /usr/src/
fscache and apply them to the kernel:

cd /usr/src/linux
for p in $(ls ..U
/fscache/patchset/*diff);U
do patch -p1 < $p; done

Before you go on to build and install the
kernel and reboot your system, it is im-
portant that you configure the kernel as
shown in Figures 2 and 3 to tell NFS to
use the cache.

AuFSKNOW-HOW

60 ISSUE 85 DECEMBER 2007

AuFS was inspired by Unionfs and offers
the same basic functionality: it merges
multiple directories (branches) to a new
filesystem. However, AuFS uses its own
design and is a completely new imple-
mentation. This makes AuFS simpler,
more secure, and faster. Other important
advantages include:

• mmap support

• loopback mounts as branches

• efficient support for sparse files

• manipulation of files in a branch

AuFS also has a Unionfs-compatible

tool, unionctl, that supports dynamic
modification of a unified filesystem: the
tool is only available in compatibility
mode. The typical approach in AuFS is
to use the mount command with special
options (see the man page). Of course,
some restrictions exist, but most of
these apply to Unionfs, too. The most
important restrictions are:

• no NFS export

• no SMP support

Various tests show that AuFS is probably
the better Unionfs right now.

Another Unionfs: AuFS

Figure 2: Build in all the options in the Caches menu item. Figure 3: The highlighted options enable the cache for NFS.

Once the kernel build is in progress,
you can install the cachefilesd [4] by
typing make install. This should be no
problem, assuming your system has
glibc version 2.4 or newer. The last pre-
paratory step creates a new mount.nfs
mount helper, which understands the
new fsc option to announce the cache.
An RPM package that contains the
sources for the NFS tools and the FS-
Cache project patches is available [5].
With the use of rpm2targz, you can con-
vert the package and unpack. To keep
this action as non-invasive as possible,
call the new version mount-fsc.nfs:

cd nfs-utils
tar jxvf

nfs-utils-1.0.9.tar.bz2
for p in $(ls *patch); U
do patch -p0 < $p; done
cd nfs-utils-1.0.9
./configure U
--disable-nfsv4 U
--disable-gss
make
cd utils/mount
make
cp mount.nfs /sbin/
mount-fsc.nfs

As mentioned, the new mount
helper announces the use of a
local cache by means of the fsc
option; the cachefilesd back-
end daemon then enables the

cache (see also Listing 1). To allow this
to happen, you need an ext3 filesystem
with extended attributes enabled:

mount-fsc.nfs 192.168.39.1:U
/export/test /mnt/test/N -o U
fsc,nolock,tcp
mount -t ext3 /dev/hdc1 U
/var/fscache -o U
user_xattr cachefilesd -s

Of course, you can’t use this approach
for a diskless client because its kernel
will not support the fsc option for the
nfsroot kernel parameter. Fortunately,
this is not necessary, in that the initial
RAM filesystem (initramfs) gives you a
far more powerful tool.

Without discussing initramfs in more
detail, we will describe the workaround
for setting the kernel option. The admin
must add the mount-fsc.nfs option, in-
cluding dependent libraries, and the
busybox framework. This enables the
init script to mount the NFS root direc-
tory with the cache option. The script
can search for a suitable cache partition
on the local disk, mount the partition,
switch_root, and launch the cache back-
end daemon. This configuration gives
you an ideal approach to running rich or
thin clients in combination with AuFS.
From an NFS root directory, you could
boot an unmodified Gentoo system with
FS-Cache [6] and AuFS support. Some
details on how to achieve this, including
a sample initramfs, are available [7]. ■

KNOW-HOWAuFS

61ISSUE 85 DECEMBER 2007

[1] Unionfs homepage: http:// www. fsl. cs.
sunysb. edu/ project-unionfs. html

[2] AuFS homepage:
http:// aufs. sourceforge. net

[3] “FS-Cache: A Network Filesystem
Caching Facility” by D. Howells in
Ottawa Linux Symposium 2006,
http:// www. linuxsymposium. org/
2006/ linuxsymposium_procv1. pdf

[4] FS-Cache kernel patches:
http:// people. redhat. com/ ~steved/
fscache/ nfs-utils/ 1. 0. 9-5/

[5] FS-Cache user space patches:
http:// people. redhat. com/ ~dhowells/
fscache/ patches

[6] FS-Cache cachefilesd:
http:// people. redhat. com/ ~dhowells/
fscache/ cachefilesd-0. 8. tar. bz2

[7] Gentoo diskless clients:
http:// mozart. informatik. fh-kl. de/
download/ Software/ GentooDiskless/
gdxs. html

INFO

Andreas Bander is a student of
Applied Computer Science at the FH
Kaiserslautern in Zweibrücken,
Germany, and has focused on Linux
and other free operating systems
for five years

Torsten Kockler is the assistant to
Prof. Wilhelm Meier at the Depart-
ment of Computer Science/ Micro-
system Technology for operating
systems and programming lan-
guages at the FH Kaiserslautern.

Prof. Wilhelm Meier is a lecturer
for operating systems at the
Department of Computer Science/
 Microsystem Technology, FH
Kaiserslautern.

T
H

E
 A

U
T

H
O

R
S

01 dir /var/fscache # ext3,fsc
cache-filesystem

02 tag mycache # Cache name

03 # Block borders

04 brun 10% # above normal operations

05 bcull 7% # clean up cache

06 bstop 3% # below cache stop

07 # Inode borders

08 frun 10% # above normal operations

09 fcull 7% # clean up cache

10

11 fstop 3% # below cache stop

Listing 1: /etc/ cachefilesd.conf

The following example clearly shows the
page-based approach the cache uses.
The big.tgz file weighs in at over 100MB.

cd /mnt/test/N

ls -l big.tgz

-rw-r--r-- 1 1000 users

115399526 Jan 23 21:19 big.tgz

And the cache is almost empty:

df /var/fscache

Filesystem 1K-blocks

Used Available Use% Mounted on

/dev/hdc1 1031800 18200

961188 2% /var/fscache

The file command only inspects the first
256KB of a file at the most:

file big.tgz

big.tgz: gzip compressed data,

from Unix, last modified:

Mon Jan 1 19:03:43 2007

The file components are stored as a
sparse file in the cache:

df /var/fscache

Filesystem 1K-blocks

Used Available Use% Mounted on

/dev/hdc1 1031800

18692 960696 2% /var/fscache

If the whole file is read, the cache grows
accordingly:

cat big.tgz > /dev/null

df /var/fscache

Filesystem 1K-blocks

Used Available Use% Mounted on

/dev/hdc1 1031800 131020

848368 14% /var/fscache

FS-Cache in Action

