
72

If you look for a route on a map, your
eyes will fall fairly directly on an effi-
cient solution. The human brain is

capable of making judgments without
much attention to optimization algo-
rithms or distance calculations. This in-
tuitive approach is very foreign to digital
computers. Conventional computer pro-
grams tend to operate through mathe-
matical solutions, which make them in-

efficient for tasks such as prediction and
pattern recognition. An experimental
form of program known as an Artificial
Neural Network (ANN) addresses this
problem by making the computer oper-
ate more like a human brain.

An artificial neural network simulates
a collection of nerve cells connected by
means of weighted paths. One successful
use for neural networks is in the field of

face recognition. A neural network can
recognize a face on the basis of a collec-
tion of colored pixels, despite noise or
distortion, just as a human can. Other
applications for neural network technol-
ogy include optical character recognition
or forecasts such as sunspot activity and
share prices.

In this article, I take a look at some of
the basic principles of neural networks
and introduce the free libfann library,
which you can use to build your own
neural network applications.

Natural Role Model
Artificial neural networks simulate the
structure of the brain. A neural network
models the effect of a collection of neu-
rons that influence each other’s states
through a large number of connections.
Different weighting of the neural connec-
tions, which represent the nerve fibers in
the brain, produces a specific output
value for a specific pattern of incoming
neurons. The connections between the

3, 4, 8, 11… ? A neural network can complete this series without knowl-

edge of the underlying algorithm – by a kind of virtual gut feeling. We’ll

show you how neural networks solve problems by simulating the

behavior of a human brain. BY ANDREAS ROMEYKE

Programming neural networks with libfann

BRAIN GAME

K
iy

osh
i Ta

ka
h

a
se S

eg
u

n
d
o, Foto

lia
Neural NetworksPROGRAMMING

72 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

73

neurons are fine-tuned through a process
analogous to training. Through the train-
ing process, the neural network learns to
associate specific input patterns with
specific output values. If the training is
successful, the artificial brain will be ca-
pable of discovering solutions not specif-
ically presented as examples.

Figure 1 shows a nerve cell, the natu-
ral role model for neurons in ANNs. The
nerve cell comprises a cell core and den-
drites that branch out from it. Dendrites
transport electrical impulses to the core
of the cell. If the sum total of these im-
pulses exceeds a predefined threshold
value (action potential), the neuron be-
comes active, sending impulses to the
cells it is linked with.

An artificial neuron simulates the
properties of its natural counterpart:
It adds the potentials of its dendrites,
applies a fixed activation function, and
passes the results to all the cells to
which it is linked (Figure 2). Links to
other neurons are weighted to attenuate
or amplify the signal along its path.

The activation function defines the
threshold at which the neuron will acti-
vate. Below this value, the neuron will
not send signals. This function is often a
simple threshold function that returns a
1 if the sum of all outputs is above a spe-
cific value. It is common to represent the
activation function in a separate neuron
known as the on neuron. You can thus
weight the on neuron like the links to
other neurons.

Design
The training process adapts the neural
network for a specific situation; how-
ever, at the structural level, the devel-

oper must also
choose a topology
for the neural net-
work that reflects the use for which it is
intended. Different types of links be-
tween neurons lead to networks with
different characteristics [2].

One of the simplest network topolo-
gies, and one that is well explored by
scientific research, is the feed forward
MultiLayer Perceptron (MLP) model [3].
This model divides the network into sep-
arate layers. This network has no feed-
back; in other words, actuation potential
simply propagates from left to right (see
Figure 3).

A neural network’s abilities, such as
the ability to recognize patterns or pre-

dict values, is a product of the network’s
internal structure.

The following operations change the
characteristics of an ANN:
• adding new connections or deleting

existing ones
• modifying the weighting of links be-

tween neurons
• modifying the neuron threshold values
• adding or deleting neurons.
Training provides the right weighting to
solve a specific problem. In the case of
character recognition, the input would
be a bitmap or a section of text and the
matching character codes. In the case of

Figure 1: Neuroscientists regard the branching of nerve cells as

the basis for the power of the human brain to recognize patterns

or predict system states that are difficult to calculate.

Dendrites Cell core

Axon

Figure 2: Just like their natural counterparts, artificial neurons cal-

culate the sum of the actuation potential of the neurons linked to

them and pass the signal on to other neurons via weighted connec-

tions. Modifying various connecting factors will modify the behavior

of the network.

w{1}

w{3}

w{2}

f(x)

w{0}

On Neuron

Aktivation function

Input Output

Figure 3: The multilayer perceptron, which allows potential to propagate from inputs to

outputs without feedback loops, is the simplest and best explored artificial neural network

structure.

1 1 1

Input Layer Hidden Layer Output Layer

On Neurons

Weighting

Neurons

PROGRAMMINGNeural Networks

73ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

stock market behavior or sunspot activ-
ity, historic data is used to train the neu-
ral network (Figure 6). A learning func-
tion compares the example input with
the target values and modifies the neu-
ron link, weighting until the reaction of
the network matches the target.

Inside the Mind
I’ll use a simple example to describe
what happens in a neural network’s
learning phase. Imagine you want a net-
work with four neurons to predict the
mean value of two numbers (see Figure
4). On the left side of the figure, the
numbers 0.1 and 0.3 are input at the
input neurons. The neural links have
random weighting values at first. The ac-
tivation function, which defines the way
a neuron reacts to input, is f(x)=x. More
powerful ANNs need more complex
functions, of course, but this simple ex-
ample is adequate to explain the under-
lying principle.

If the input neurons have the values
0.1 and 0.3, weighting the connections
for the potentials gives the following val-

ues: (0.1*1.0 + 0.3*0.9 + 1.0*0.4) =
0.77 for the first neuron N(1.1), and
(0.1*0.2 + 0.3*0.3 + 1.0*0.7) = 0.81,
for the second neuron N(1.2). The neu-
ron between the input and output layers
has a value of (0.77*0.5 + 0.81*0.1 +
1.0*0.2) = 0.666. The output neuron re-
turns a value of: 0.666*0.2 + 1.0*0.3)
= 0.433, although the correct average of
the numbers 0.1 and 0.3 is 0.2.

In other words, the network did not
come very close to the correct value in
this first pass. To allow the ANN to get
its math right, I need to modify the
weighting for the neural links. The error
contribution lets me discover which
weighting between which neurons I
need to correct. The error contribution is
the square of the expected output value,
minus the square of the values returned
at the output neurons. The resulting
value is known as the mean squared
error (MSE or MQLE).

Reverse Gear
Action potentials typically move forward
through the network from the input to-

ward the output (feed forward). A teach-
ing method known as back propagation
reverses the direction: It feeds the error
value returned at the output backward
through the network toward the input on
the basis of the weighting of the individ-
ual connections. The distribution of
error values over the nodes of the mesh
network provides the basis for modifying
the weighting. (The experts have devel-
oped several other teaching methods in
addition to back propagation, and some
methods promise better results for cer-
tain tasks.)

Figure 5 shows how the error contri-
bution propagates backward from the
output to the input. The potential of the
output neuron is the sum of its two
links: the link to the on neuron with a
weighing of 0.3, and the connection to
the neuron in the underlying layer,
which is weighted at 0.2. On this basis,
the error contribution (0.433 - 0.2 =
0.233) at the output neuron is distrib-
uted over the two links. The path to the
on neuron has a share of 0.3/(0.2+0.3)
= 60%, and the path to the underlying
neuron has a share of 0.2/(0.2+0.3)=
40%. This approach provides the ability
to calculate the total error potential for
each neural link.

Finally, a fixed learning factor stipu-
lates how an error contribution influ-
ences the weighting. A good choice of
learning factor is a major prerequisite for
effective training. Just like many other
network parameters, the factor is often
unknown until you start training. Com-
plete training of an ANN will always
comprise a large number of back-propa-
gation cycles with pairs of input and out-
put values for the problem you need the
network to solve after training.

Training Plan
It is obvious that weighting should never
be zero because there would be no way
of tracing errors back. Too evenly distrib-
uted or too widely differing weighting
also has a negative effect on the learning
process. For an efficient ANN, it is pref-
erable for signals to propagate through-
out the whole network except for spe-
cific areas of the network to handle spe-
cific patterns.

In practical applications, the simple
activation function f(x)=x will be re-
placed by a hyperbolic tangent or a sig-
moidal function. This improves the per-

Figure 4: The behavior of a neural network is defined by neural link weighting and the on

neurons, which fix the threshold as of which neurons will pass on stimulus to others.

1 1 1

Input Layer Hidden Layer Output Layer

On Neurons

Weighting

Neurons

0,1
0,433

0,3

1,0

0,9

0,4

0,2
0,3
0,7

0,5

0,1

0,2

0,2

0,3

1, 0

0, 9

0, 2

0, 3

0, 4

0, 7

0, 5

0, 1

0, 2

0, 2

0, 3

Weighting

Neural NetworksPROGRAMMING

74 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

formance of the neural network, as these
functions can map an input range to in-
finity with manageable values. Back
propagation also assumes that the acti-
vation function can be reversed. The ad-
vantage of this extra effort is that three-
layer perceptrons are capable of learning
arbitrary, mathematic functions, assum-
ing they use suitable non-linear activa-
tion functions.

The FANN Library
The Fast Artificial Neural Network Li-
brary (FANN) is a free, open source li-
brary that provides a C interface for im-
plementing multilayer neural networks.
The library was developed in 2003 by
Steffen Nissen at the University of
Copenhagen as part of his scientific re-
search, and it is still under active devel-
opment. Libfann is easy to use and well
documented, and it will run on any pop-
ular platform. The project page also has
a couple of practical examples that make
it easier to get started. Apart from C,
there are bindings for all common pro-
gramming languages. As of this writing,
libfann is one of the fastest implementa-
tions for neural network simulation.

Most Linux distributions include lib-
fann version 1.2. aptitude install lib-
fann1-dev will install the library on
Debian. The source code, which you can
build in the usual way, configure; make;
make install, is available from [1].

Building Your Own
All neural network applications are dif-
ferent, and it is not possible to explore
all the subtleties of this complex field in
a single article. The libfann project web-
site includes a reference manual with de-
scriptions and usage notes for the func-
tions in the library. See the Linux Maga-
zine website [4] for an example C pro-
gram that creates a neural network and
then goes on to train it.

If you feel like experimenting, a few of
the more important libfann functions are
fann_train(), fann_run(), and fann_
test(). fann_train() expects a network
structure, struct fann * ann;, as its first
parameter; you can call ann=fann_
create(connection_rate, learning_rate,
num_layers,num_input, num_neurons_
hidden, num_output); to create the
structure. The connection_rate specifies
the strength of the links between the
neurons. The right value is normally 1.0.

The learningrate should be between 0.7
and 0.00001. The num_layers parameter,
and the values that follow it, tell libfann
the number of layers in the network and
the number of neurons in each layer.

Training and Thinking
Parallels to human thinking are useful
in understanding what happens during
training and in discovering the source of
any problems on neural networks – after
all, neural networks do emulate the
structure of the human brain. If the
training session feeds the historic data in
chronological order, the network might
develop tunnel vision. In other words,
the ANN would simply encode the struc-
ture of the first or possibly a couple ex-
amples in its neurons. This would affect
the ANN’s ability to handle new data.
A random order avoids premature gener-
alization and thus avoids the need to re-
train the neural network after an invalid
structure is established in the neural
links. The Perl script [5] thus ensures
a random data order.

Data that the network has not seen
during training helps you judge how
well the ANN can handle abstractions at
the current state of training. The Perl
script [5] splits the data into two sub-
sets. The error occurring here is referred
to as the mean squared generalization

error, or MQGE. Along with the mean
squared learning error (MQLE), it tells
whether the neural network is ready to
predict the future, or whether more
training is needed. Libfann injects the
two values via the fanntest(ann, in-
putarray, expected_outputarray) and
fann_get_MSE() functions. Finally,
fann_save(ann, filename) stores the net-
work structure and the current weight-
ing for future use.

Real Life
Whether training is successful or not de-
pends not only on the data and the data
order, but also on the suitability of the
network structure for the task in hand –
starting with the activation function.
Libfann uses the Sigmoid function by de-
fault, and this is fine for predicting sun-
spot activity and other phenomena that
fall in a positive range. For share price
variations and other temporal series con-
taining negative values, you will need
fann_set_activation_function_
output(ann, FANN_SIGMOID), the hy-
perbolic tangent function.

The learning factor also has a major
influence on success or failure of train-
ing in that it specifies what effect learn-
ing errors have on the weighting of the
links between neurons and on the num-
ber of neurons on the network. The

Figure 5: Neural networks learn by making errors guessing specific values, tracing the errors

back through the whole structure, and re-weighting individual links to neurons on the basis of

size of the error contribution compared to the total error.

1

Hidden Layer Output Layer

On Neurons

Neurons

0,2

0,3

e = 0,233
e = 0,093

e =0,14

Calculated: 0,433

Expected: 0,2

Error e = 0,233

Correction through
Learning Step

Error Feedback

Revise fig text as follows:
Hidden Layer Output Layer
Neurons
On Neurons

PROGRAMMINGNeural Networks

75ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

number of neurons in the intermediate
layer should be kept to a minimum at
first. Three or a maximum of 15 neurons
will be fine for most applications. Trial
and error will also give you a gut feeling
for appropriate numbers. For this train-
ing session, 500,000 learning steps
should be sufficient.

If the number of learning errors does
not drop continuously, the network is
stuck at a local minimum, and its perfor-
mance is unlikely to improve no matter

how long you continue training. In this
case, you will need to restart training
with a smaller learning factor and possi-
bly change the structure of the network.
Inspecting the fann_save file could re-
veal why you can’t improve the perfor-
mance of a network simply by training:
Individual neurons with excessive
weighting often interfere with the learn-
ing process.

If the learning error continues to drop,
as shown in Figure 7, it is time to take a

look at the generalization error: If the
curve is smooth, you can’t expect too
much in the line of predictive ability.
The network has learned the training
values by heart and will be thrown by
unknown input values. To change this,
you will need to reduce the number of
hidden neurons.

If the generalization error is at a con-
sistently high level, the number of hid-
den nodes is too low, or the training ses-
sion was not intensive enough.

Libfann’s fann_load loads a network
stored previously using fann_save();
fann_run(ann, input) returns the output
to the trained network. The Perl script
[5] automates a test of the neural brain.
In this test, the output from a success-
fully trained network was pretty close
to the predictions.

Conclusion
Libfann makes it easy to set up, train
and use ANNs. Users don’t need to
worry about mathematical details such
as inverting the activation function.
Choosing parameters such as the learn-
ing rate and the number of intermediate
neurons does take some experience and
patience. The learning error, the general-
ization error, and an understanding of
the saturation of individual neurons will
give you some hints as to why training
fails for a specific network. Libfann will
help you to ascertain these values.

The current version 2.0 of the libfann
library extends the functional scope,
adding new learning algorithms and
neuron types. ■

[1] Libfann: http:// fann. sourceforge. net

[2] Neural network types: http://www.
neuronalesnetz.de/netztypen.html

[3] Multilayer perceptron: http:// en.
wikipedia. org/ wiki/ Perceptron

[4] C training program: http://www.linux-
magazine.com/Magazine/Down-
loads/83

[5] Perl data preparation script: http://
www.linux-magazine.com/Magazine/
Downloads/83

[6] Warren Sarle. comp.ai.neural-nets
FAQ, http:// www. faqs. org/ faqs/ ai-faq/
neural-nets

[7] Russell, Stuart and Peter Norvig.
Artificial Intelligence: A Modern
Approach, 1st ed. Prentice Hall, 1995.

INFO

Figure 6: A neural network with three layers of neurons draws on the sunspot activity of the

last 30 years, which is fed to the input neurons to predict the intensity for next year.

0

20

40

60

80

100

120

140

160

180

1950 1960 1970 1980 1990 2000 2010

su
ns

po
t a

ct
iv

ity

years

activity

0

20

40

60

80

100

120

140

160

180

1950 1960 1970 1980 1990 2000 2010

su
ns

po
t a

ct
iv

ity

years

activity

1 1

Weighting

Neurons

1

30 Input
Neurons

1 Output
Neuron

30 Hidden
Neurons

Figure 7: If training is successful, the learning error (MQLE) will drop continually. At the same

time, the neural network will continually improve its ability to abstract from values; this is

represented as a falling generalization error (MQGE) value.

Neural NetworksPROGRAMMING

76 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

