
54

A typical firewall configuration
denies everything that isn’t
strictly needed for daily work.

Even relatively harmless tools such as a
webcam or a personal IRC server won’t
operate through a firewall. Apart from
begging the sysop to change the ruleset,
the only workaround may be to dig a
private tunnel through the firewall with
OpenVPN.

This article describes how to tunnel
through a firewall with a VPN connec-
tion. I’ll assume you already have
OpenVPN installed on your Linux sys-
tem or that you know where to find it.
OpenVPN is a very common application
that is included with many popular
Linux distributions. See your vendor
documentation for more on setting up
OpenVPN.

Undermining the Firewall
OpenVPN does not require root privi-
leges to set up a VPN. As long as the
program has access to the virtual TUN/

TAP devices, it is quite happy to run
with user privileges in userspace. In a
simple scenario, all you need are a few
parameters to set up the VPN. The only
file you need is a shared secret, which

you can create client-side by entering
openvpn --genkey --secret secret.key and
copy to the server.

A connectionless protocol such as
UDP is your best option for tunneling

Firewalls sometimes prohibit everything but everyday surfing, leaving users with no hope of running IRC

or streaming servers through the firewall, unless they use a virtual private networking tool like OpenVPN.

BY MIRKO DÖLLE

01 #!/bin/bash

02

03 DEVICE="tun0"

04 PORT="1194"

05 LOCALIP="192.168.8.1"

06 REMOTEIP="192.168.8.128"

07 KEYFILE="/etc/openvpn/shared.
key"

08 MAXRATE="16000"

09

10 /usr/sbin/openvpn --daemon
--dev $DEVICE \

11 --proto tcp-server --port
$PORT \

12 --ifconfig $LOCALIP

$REMOTEIP \

13 --secret $KEYFILE
--persist-tun --ping 30 \

14 --ping-restart 180 --shaper
$MAXRATE \

15 --writepid /var/run/
openvpn-${DEVICE}.pid

16

17 while true; do

18 if [! -e /var/run/
openvpn-${DEVICE}.pid]; then

19 break

20 fi

21 done

Listing 1: openvpn-server.sh

w
w

w
.p

h
oto

ca
se.d

e

DATA TUNNEL
Workshop: A quick and simple private tunnel with OpenVPN

DATA TUNNEL

OpenVPNKNOW-HOW

54 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

TCP/ IP: this avoids the scenario
where OpenVPN and the encapsulated
TCP connection time out at the same
time, which could cause a landslide of
retry packets if you are unlucky. Unfor-
tunately, most firewalls and routers in
businesses or Internet cafés do not allow
clients to receive UDP packets off the
Internet.

The only alternative in this case is to
opt for a TCP connection. This means
using the client to establish the VPN
with the server listening on a specific
port for the incoming connection.

Simple Setup
Listings 1 and 2 show two short scripts
for the server and client. OpenVPN does
not require configuration files, provided
the command line parameters supply
all the settings required for creating the
tunnel. Some options that users need to
change from case to case are shown at
the beginning of Listings 1 and 2.

The server does not need much infor-
mation: OpenVPN requires the IP
addresses of the server-side (LOCALIP)

and client-side (REMOTEIP) VPN inter-
faces, the tunnel device, the port num-
ber, and the file with the key. The
MAXRATE variable is only needed for
traffic shaping and sets the maximum
outgoing transfer rate in bytes per sec-
ond.

Traffic Shaping
If the server script is running on a root
server, for example, traffic shaping may

not seem to make much sense at first –
unless the idea is to keep a low profile
and hide the tunnel in the general net-
work traffic.

The main benefit of traffic shaping
will typically be in SOHO networks with
DSL connections. Because the upstream
bandwidth is a lot less than a DSL cli-
ent’s downstream, the Internet connec-
tion beyond the tunnel can become
unusable. I use a limit of 16 kbps, as

Figure 1: Using TCP, the client sets up an encrypted connection to the Open VPN server and

tunnels any other protocols via the server.

Real address Real address

»eth0« »eth0«

Virtual address

»tun0« »tun0«

OpenVPN OpenVPN

»/dev/tun0« »/dev/tun0«

Virtual address

Server

VPN

Firewall

tunnel
TCP connection

Client

New English text for fig: Virtuelle Adresse --> Virtual address TCP Verbindung Tunnel --> TCP connection tunnel Reale Adresse --> Real address

Workshop: A quick and simple private tunnel with OpenVPN

DATA TUNNEL

ADVERTISEMENT

KNOW-HOWOpenVPN

shown in Listing 1, for a DSL connection
with a maximum upstream bandwidth
of 256KBits/sec – setting this limit
means I have at least half the bandwidth
for other services such as Apache or for
normal surfing.

The OpenVPN syntax in lines 10
through 15 uses the variables defined at
the top. The critical parameters here are
--daemon, --proto tcp-server, and --per-
sist-tun. --daemon launches OpenVPN in
daemon mode, allowing the server script
to continue. This is not important in
Listing 1, as the loop in lines 17 through
21 prevents the script from exiting while
OpenVPN is running. However, if you
need to open up the firewall, enable
masquerading, or change your routing
parameters, lines 15 through 17 are the
best place to do this. You can append
any cleanup commands you need at the
end of the script.

Client and Server Protocols
The --proto tcp-server parameter enables
OpenVPN on the server and tells

OpenVPN to listen for incoming TCP
connections. The client service uses the
tcp-client protocol, as shown in line 13
of Listing 2.

Without --persist-tun, the TUN inter-
face would be closed and reopened
whenever the tunnel was interrupted,
which would mean losing the routing
entries for the tunnel and dropping all
connections.

The loop given in lines 17 through 21
of Listing 1 is a simplified version in
comparison to the loop in the script at
[2]; it lacks failsafe mechanisms that
check if OpenVPN is still running – in
which case the loop terminates and the
script processes the cleanup commands
below line 21. openvpn-server.sh can
easily be called using an init entry in
/etc/inittab.

The client script for OpenVPN in List-
ing 2 is twice as long as the server script,
as it needs to set up the routing environ-
ment for the client machine after calling
OpenVPN in lines 12 through 17. This
assumes that OpenVPN has established

the network device, which is verified by
checking the exit status of ifconfig in
lines 20 and 21.

Now that the tunnel device is up and
operational, line 22 sets up a static route
to the OpenVPN server – the VPN con-
nection is now independent of the
default route so that line 24 of the script
can delete the default route, which is
then set up again in line 26 using the
OpenVPN server as the gateway. From
this point on, any new network connec-
tions will be routed through the VPN to
the server (Figure 1) – OpenVPN has
now undermined your company firewall,
and the client machine has unrestricted
– and unobserved – access to the Inter-
net. The ping command given in line 27
opens up the VPN tunnel, which has
been set up but is still closed until this
point.

Individual Routing
To prevent the client script from being
obstructed by routing issues, the routing
commands in the loop between lines 19
and 32 are repeated ten times at the
most. The loop in lines 34 through 38
is curtailed just like the server script in
Listing 1, although this has no effect
on the functionality – it waits until
OpenVPN is terminated. Lines 40 and
41 then delete the static route to the
OpenVPN server and reestablish the
default gateway.

The approach to establishing an
OpenVPN tunnel demonstrated in this
article requires a server for every VPN
client. This requirement of a server for
every client could easily get out of con-
trol if you need to support multiple cli-
ents or if your network encompasses
several company offices. For users with
more complicated requirements,
OpenVPN version 2.0 or newer provides
Public Key Infrastructures, CAs, and
multiple client support for more
advanced scenarios. But for a personal
IRC server or a webcam, a simple com-
mand line based configuration such as
the configuration described in this article
should be just fine. ■

01 #!/bin/bash

02 DEVICE="tun0"

03 REMOTE="athome.dyndns.org"

04 GATEWAY="192.168.1.254"

05 PORT="1194"

06 LOCALIP="192.168.8.128"

07 REMOTEIP="192.168.8.1"

08 REMOTENET="192.168.42.0/24"

09 KEYFILE="/etc/openvpn/shared.
key"

10 MAXRATE="16000"

11

12 /usr/sbin/openvpn --daemon
--dev $DEVICE \

13 --remote $REMOTE --proto
tcp-client \

14 --port $PORT --ifconfig
$LOCALIP $REMOTEIP \

15 --secret $KEYFILE
--persist-tun --ping 30 \

16 --ping-restart 180 \

17 --writepid /var/run/
openvpn-${DEVICE}.pid

18

19 for ((i=0; i<10; i=$[$i+1]));
do

20 ifconfig $DEVICE >/dev/null
2>/dev/null

21 if ["$?" -eq 0]; then

22 route add $REMOTE gw
$GATEWAY

23 if ["$?" -eq 0]; then

24 route del default gw
$GATEWAY

25 route add -net $REMOTENET
gw $REMOTEIP

26 route add default gw
$REMOTEIP

27 ping -c 1 $REMOTEIP >/
dev/null 2>/dev/null &

28 break

29 fi

30 fi

31 sleep 5

32 done

33

34 while true; do

35 if [! -e /var/run/
openvpn-${DEVICE}.pid]; then

36 break

37 fi

38 done

39

40 route del $REMOTE gw $GATEWAY

41 route add default gw $GATEWAY

Listing 2: openvpn-client.sh

[1] OpenVPN: http:// openvpn. net

[2] OpenVPN scripts: http:// www.
mirko-doelle. de/ linux/ openvpn-server.
sh and ... / openvpn-client. sh

INFO

OpenVPNKNOW-HOW

56 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

