
66

Since 1985, experts have known
that the Transmission Control
Protocol (TCP) is unsafe. Attack-

ers can take down, corrupt, or even
hijack existing TCP connections armed
with just a few basic details of the con-
nection: the source IP address, the target
address, and a valid sequence number.
If an attacker is able to sniff the connec-
tion, the battle is over before it begins.
If the attacker can’t do so, because they
don’t control a machine in the path
between the client and the server, things
become a little more complicated. How-
ever, people have definitely overesti-
mated the effort required to undermine a

connection, and tricks like TCP window-
ing make remote manipulation even
 easier.

One of the most difficult issues, is that
of guessing the right sequence numbers.
This is the only way to convince the tar-
get machine that the injected IP data-
grams really belong to the current TCP
connection. If an attacker has the right
values, there is nothing to stop him from
injecting data into the existing connec-
tion, thus gaining unauthorized access
to information or taking down the con-
nection by transmitting a packet with the
Reset flag (RST) set.

In many cases a reset is just a minor irri-
tation; this is particularly true if you are
just surfing the web. In other situations, it
can cause major problems: repeated inter-
ruptions to a BGP (Border Gateway Proto-
col) connection between two core routers
on the Internet could be expensive.

But a DoS attack could potentially be
a major threat to smaller enterprise net-
works as well. Imagine malevolent hack-
ers taking down an online shop for an

extended period; the resulting revenues
losses could be considerable [1].

Background
We need a bit of background information
on TCP to understand the vulnerability.
The protocol was specified in RFC 793
[2], which was published in 1981. Each
TCP segment starts with a header, which
contains the source and target ports
(both 16-bit values between 0 and
65 535) and other important parameters,
such as the sequence and acknowledg-
ment numbers, both 32 bits. Add a smat-
tering of control flags (SYN, ACK, PSH,

It is quite easy to take a TCP connection down using a RST attack, and this risk

increases with applications that need long-term connections, such as VPNs, DNS

zone transfers, and BGP. We’ll describe how a TCP attack can happen, and we’ll

show you some simple techniques for protecting your network.

BY CHRISTOPH WEGENER AND WILHELM DOLLE

Understanding and preventing TCP attacks

HIJACK PREVENTION

Wilhelm Dolle is a
CISSP certified and
a BSI licensed IT
security auditor. As
a member of the
Interactive Systems
GmbH (iAS) man-
agement team, he is responsible for
Information Technology and IT
Security.

T
H

E
 A

U
T

H
O

RChristoph Wegener
has a PhD. in phys-
ics and is head of
Business Develop-
ment at gits AG. He
has been a free-
lance consultant for
Linux and IT security for many
years.

T
H

E
 A

U
T

H
O

R

TCP HijackingSYSADMIN

66 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

67

URG, RST und FIN) and the size of
the receive window. The latter is critical
to the exploit we will be discussing
(Figure 1).

An established connection is uniquely
identified by a quadruple (group of four)
consisting of the source IP and port, and
the target IP and port. The sequence
number identifies the position of the seg-
ment in the data stream belonging to the
connection to a byte. Anyone who has
the details of the quadruple and can
guess a valid sequence number has all
the information he or she needs to gate-
crash a connection. No matter where the
attacker may be, he or she can just spoof
a packet and send it on its way.

Random Numbers
In principle, a sequence number can
have one of 232 possible values. The
odds on guessing the right number,
using it to craft a packet, and injecting
the packet into the connection at the
right time, are very slim. However, the
odds can change if the sender and
receiver do not use random initial
sequence numbers (ISN) when setting
up the TCP connection (3 way hand-
shake). As the connection progresses,
the sequence number is just incre-
mented for each byte transmitted.

Whereas the target port number is typ-
ically dictated by the application and the
service listening on that port, the source
port can have any value between 0 and
65,535. The fact that the first 1024 ports
on Unix are reserved for privileged
processes is not important to this evalua-
tion. For a long time, people just
assumed that an attacker would need to
try 232 sequence numbers, multiplied by
216 possible source port numbers, to
remotely attack a TCP connection with-
out sniffing the connection. Unfortu-
nately, most operating systems do not
select the source port at random; but
more of that later.

The biggest problem with TCP has to
do with the windowing mechanism.
Packets can overtake each other on the
Internet. The receive window allows the
receiving end to put the individual seg-
ments back together in the right order,
and to confirm reception of a group of
segments.

The RFC 793 glossary explains the
window mechanism as follows: “This
represents the sequence numbers the
local (receiving) TCP is willing to
receive. Thus, the local TCP considers
that segments overlapping the range
RCV.NXT to RCV.NXT + RCV.WND – 1
carry acceptable data or control.
Segments containing sequence numbers
entirely outside of this range are consid-
ered duplicates and discarded.”

Closing the Window
If the sequence number of a packet is
within the receive window, TCP will
accept and process the packet. This con-
siderably reduces the number of guesses
an attacker would need; in the case of

sequence numbers, the number of
guesses drops drastically from 232 to 232/
window size.

Depending on the operating system,
the window size can be between 65,535
bytes (Windows XP Professional with
SP2) and 5840 bytes (Linux kernel 2.4
and 2.6). Table 1 has more values for the
initial window size. The window size
also varies depending on the application.
Whereas Cisco Telnet uses a size of 4192
bytes, the value for Cisco BGP is 16,384
bytes.

No matter how you look at it, the
receive window will reduce the number
of sequence numbers an attacker needs
to investigate. If you take a Windows XP
system, the numbers drop to 65,000. In
other words, an attacker would just need
to generate 65,000 attack packets to
inject a valid RST packet and thus take
down the connection. This is a terrify-
ingly small number. Good intrusion
detection systems (IDS) will trigger due
to the large number of RST packets, but
hard working networks without this fea-

1981: The Transmission Control Protocol
(TCP) is specified in Request for Com-
ment (RFC) 793 [2].

1985: Bob Morris points out vulnerabili-
ties in TCP [14].

1994: The first publicized manipulation
of TCP vulnerabilities occurs when Kevin
Mitnick uses the so-called Christmas Day
attack to hit security expert Tsutumo Shi-
momura [19].

1995: Paul Watson posts an advisory on
TCP vulnerabilities on Usenet. The advi-
sory receives a significant attention. A
number of investigations follow, espe-
cially in the field of sequence number
generators.

1995: Laurent Joncheray presents a
paper on the topic “Simple Active Attack
against TCP” at the Usenix conference
[15].

2001: Cert describes a vulnerability in
various TCP/ IP sequence number gener-
ators and points to the window size
issue [16].

2003: Paul Watson shows that attacks
are quite easy to perform even using a
simple DSL connection.

2004: The IETF (Internet Engineering
Task Force) publishes an initial version of
the Internet draft “Improving TCP’s
Robustness to Blind In-Window Attacks”
[10].

History

Figure 1: Every TCP segment starts with this header, followed by the payload. In combination

with the IP addresses, the port numbers uniquely identify the connection, and the sequence

number identifies the location of the packet within the data stream.

0 7 8 15 16 23 24 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved

UR
G

AC
K

PS
H

RS
T

SY
N

FI
N Window

Checksum Urgent Pointer

... Padding
Options

Operating system Window Size
Linux Kernel 2.4 5840 Bytes
Linux Kernel 2.6 5840 Bytes
OpenBSD 3.6 16,384 Bytes
Windows 2000 SP1, SP2 17,520 Bytes
Windows 2000 SP3, SP4 65,535 Bytes
Windows 2000 MS05-019 17,520 Bytes
Windows XP Professional, SP2 65,535 Bytes

Table 1: Initial Window Size

SYSADMINTCP Hijacking

67ISSUE 58 SEPTEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

ture would not even notice the traffic
from these packets.

Highly Scalable
Things get even worse if the parties in a
connection support window scaling.
This TCP extension (RFC 1323, [3])
increases the odds of finding a matching
sequence number within a short time.
Window scaling is designed for connec-
tions that need more than the standard
window size due to high bandwidth or
latency. To allow everyone to transmit
without interruptions, and without wait-
ing for acknowledgments, this technique
scales the receive window size by up to
14 bits (Microsoft Windows). This is a
factor of 16,384. The receive window is
only restricted to a value of 65,535 bytes
as specified in RFC 793 if neither end of
the connection uses window scaling.

The attacker still has to overcome one
more obstacle: the source and target IP
address/ port quad. The IP addresses are
no problem – attackers know who they
are gunning for – and the target port is
just as easy. It is slightly more difficult
to guess the source port, which could
be anywhere between 0 and 65,535 in
theory. The range is smaller in practical
applications with ports below 1024 and
above a certain operating system specific
threshold reserved for special tasks.

A Linux system (with kernel 2.4 or
2.6) and at least 128MB RAM uses
source ports between 32,768 and 61,000

(or less than this, if the system does not
have 128MB memory). The kernel typi-
cally uses the ports above 61,000 for
masquerading. You can check out these
values in /proc/sys/net/ipv4/ip_local_
range, and change then using sysctl, for
example: sysctl -w net.ipv4.ip_local_
range="32768 61000".

No Need to Guess
Much to the delight of attackers, the
remaining 28,232 options are by no
means randomly distributed; the kernel
assigns them based on a specific
scheme. This is one revelation in Paul
Watson’s [4] advisory. Attackers should
have no trouble predicting source ports.
There are only a few exceptions, such as
OpenBSD, that actually bother randomly
assigning source ports. For example,
Windows XP starts with source port 1050
for the first connection, and increments
this number for every consecutive con-
nection. Linux (Fedora Core 3 with ker-
nel 2.6.9 in this case) starts at 32,768
and again increments the numbers.

Figure 2a shows a Linux system with
kernel 2.6 (ports 32,771 through 32,777.)
Compare this with Figure 2b, which
shows OpenBSD 3.6 with random source
port assignments. Cisco systems incre-
ment the port by 512 for each new
connection, but that doesn’t make the
mechanism any safer.

Attackers do not need to guess the
source port if they know the current con-

nection number on the victim’s
machine. All an attacker typically needs
to do is start with the known initial
value, and try, say, 50 ports. Inquisitive
hackers should have no trouble at all
fingerprinting the operating system. So,
in fact, predicting source ports is not
really an obstacle.

Attack Techniques
Many attacks on TCP connections rely
on the vulnerabilities discussed so far.
One exploit involves an attacker inject-
ing RST (Reset) control bits. According
to RFC 793, this flag tells the target to
drop the connection without any further
interaction. The target evaluates the
sequence number and possibly the
acknowledgment number to decide
whether to honor or ignore the reset
command. The target is not permitted
to send an RST in reply.

The important thing about the specifi-
cation is that the target always has to
verify the RST based on the validity of
the sequence number. The target only
closes the connection if the sequence
number is within the receive window.
Although the target could evaluate the
acknowledgment number, there is no
need for it to do so. Security expert Paul
Watson (see the box titled “History”)
investigated a large number of TCP
stacks for this and discovered that most
of them simply ignore the acknowledg-
ment number [4].

An RST packet received within the
permitted window, and with data that
match the connection, will always lead
to the connection being terminated.
Long-term connections, such as BGP
connections between routers, are partic-
ularly vulnerable to reset attacks. For
one thing, an attacker has enough time
to insert a carefully crafted packet, on
the other hand, the damage that DoS
could cause is extreme. The routers need
to reconfigure their neighbor tables, and
this could take a few minutes under real-
life conditions.

Synchronous Demise
What is less obvious is the fact that a
SYN flag is also capable of taking a con-
nection down. RFC 793 specifies that
when the SYN flag is set at the start of a
connection, the sequence number field
must hold the starting value for the
sequence numbers to be used later. If a

Figure 2a: The netstat -nt command lists the TCP connections for the local machine. The source

port number follows a simple scheme. The kernel increments the number for each connection.

Figure 2b: OpenBSD goes to the trouble of making things difficult for attackers. This includes

assigning a random source port for each connection, which forces the attacker to guess the

number rather than predicting it.

TCP HijackingSYSADMIN

68 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

SYN packet arrives later on in the con-
nection, RFC 793 states that this is an
error. As a consequence, the receiver is
forced to cancel the connection imme-
diately by transmitting a reset packet.

This is TCP’s way of avoiding the
same connection being initiated twice,
when one of the sides reboots, for exam-
ple. Setting a RST or SYN flag in an IP
datagram with a valid sequence number
has the same effect: it closes the connec-
tion. In contrast to a RST packet, the
host will respond to the SYN packet by
transmitting a RST. There is a technical
term for this behavior: we say that the
receiver reflects the packet. And this
opens the way to another DoS attack.
The attacker can use up a victim’s band-
width. This technique is particularly suc-
cessful in case of ADSL lines. The victim
receives the data faster than it can trans-
mit the responses.

Whereas RST and SYN attacks do not
use a payload in the IP datagram, a third
technique injects data into an existing
connection. The attacker could inject
arbitrary data that corrupts the connec-
tion, or the attacker might craft the data
carefully to provoke an error condition.

The victim might not even notice the
manipulation.

Practical Applications
To test his theories [4] under real condi-
tions, Paul Watson developed the reset_
tcp.c tool, which he published in May
2004 [12]. What Paul noticed was that a
simple DSL connection was all it took to
guess a sequence number that would
take down a connection within eleven
minutes, given a window size of 65,535
bytes and 50 source ports to investigate.
With a receive window size of only
16,384 bytes, the process would take 45
minutes.

The program requires the “Libnet
Packet Construction Library” [13] by
Mike D. Schiffman. You need to specify
your own MAC address and the MAC
address of the target interface before
building the program. The latter is typi-
cally your default gateway or the inter-
face on the victim machine, if this hap-
pens to be on the local network.

When called, the program expects a
few parameters: reset_tcp interface
sourceIP sourceport targetIP targetport
windowsize. The interface is the network

card via which the RST packets will be
leaving the attacking machine.

The first practical test was to have the
tool take down an SSH connection
between two Linux computers (Figure
3). Both machines use T-Com T-DSL
1000 to connect to the Internet
(upstream: 128Kbps). For this simple
test, we will assume that the attacker
already knows the source port. The RST
packet size is 40 bytes (for the IP and
TCP headers), or 320 bits if you prefer.

Let’s assume that the window size is
5840 in both directions. Based on the
theory, we can work out how long it will
take at the most to take down the con-
nection: the maximum value of the
sequence number, divided by the win-
dow size, multiplied by the size of a
packet, divided by the transfer rate. Add-
ing the values gives us: 4294967296 /
5840 * 320 bits / 128000 bps, which
comes to 1840 seconds, or 30 minutes
and 40 seconds.

If we assume that all attempts have
the same odds of succeeding, the
attacker will actually only take half this
time, that is, 15 minutes and 20 seconds.
Our test results confirm this assumption:

Acknowledgment Number: This is a 32-
bit element of the TCP segment header
containing the sequence number that the
sender of the data segment expects in
the TCP segment header of the next IP
datagram.

BGP: The Border Gateway Protocol
describes how routers notify each other
of the availability of communication
routes. The strength of the BGP protocol
is that it can merge various optional rout-
ing paths to form a single routing table.

Control Bits: These flags are part of the
TCP segment header. There are six con-
trol bits:

• SYN: Synchronization request at the
start of a connection.

• ACK: This packet confirms that the
sender has received all the packets
whose sequence number is smaller
than the value specified in the
acknowledgment number field.

• FIN: All data have been sent (finish;
regular connection termination).

• RST: Cancel/ Reset connection.

• PSH: A push flag tells the TCP stack
to flush all buffers and transmit any
pending data immediately, or forward

that data to the appropriate appli-
cation.

• URG: If the URG flag is set, the content
of the Urgent header field points to the
data that the receiver would like to
expedite.

ICMP: The Internet Control Message Pro-
tocol (defined in RFC 792) is mainly used
for troubleshooting and information
exchanges.

Looking Glass: This service allows users
to ascertain if a server is available and
how good the connection is [6]. This is
done by querying the BGP routers
involved. The Looking Glass service
gives users a clear overview of the con-
nection quality. Ping and traceroute can
provide additional information on the
intermediate systems.

MD5 Signature: MD5 calculates a
unique hash for an arbitrary data set. If a
password is used to calculate the hash,
MD5 can generate a signature (keyed
hash).

Sequence Number: This is a 32 bit TCP
segment header element which specifies
the number of the first octet (byte) in the
data segment. The receiver uses the

sequence number to check the order and
validity of the incoming packets. This
protects the receiver against replay or
injection attacks. However, this feature is
designed to counteract random error
and does not give the receiver much pro-
tection against manipulated packets.

TCP: The Transmission Control Protocol
(defined in RFC 793) controls the data
transfer between the sender and
receiver. In contrast to the User Data-
gram Protocol (UDP, defined in RFC 768),
TCP is connection oriented and ensures
that all the data arrives uncorrupted and
in the right order.

Window Size: This is a 16 bit TCP seg-
ment header element that specifies the
number of data octets (bytes) that the
sender of the TCP segment will accept as
valid.

Window Scaling: An approach to opti-
mizing the performance of high band-
width connections or connections with
high latency times. Window Scaling
involves increasing the size of the
receive window to allow entities to pro-
cess packets that arrive late, and to trans-
mit more data without waiting for an
acknowledgment.

Important Terms

SYSADMINTCP Hijacking

69ISSUE 58 SEPTEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

we recorded an average value of 932
seconds (15 minutes and 32 seconds) for
a series of 20 tests that we performed.
Let’s say you needed to test 50 source
ports (on a computer with just a few
network connections); the time required
to perform the attack would be about 13
hours. This is a lot of effort, even for a
long-term SSH connection.

Variable Windows
Most operating systems modify the
window size in an active connection
to reflect the traffic volumes. For exam-
ple, Linux increases the window size for
an SSH connection which is just trans-
ferring the output from the top com-
mand to a value of more than 16,000. If
the attacker knows that the victim uses
the connection to transfer larger volumes
of data, the attacker can leverage the
larger window size. We repeated the
tests for our example of a user running
top over an SSH connection and mea-
sured a time of 5 minutes and 45 sec-
onds for a window size of 16,000,
assuming a known source port.

We based another set of experiments
on Watson’s example of a BGP connec-
tion: a Linux computer with (kernel 2.4,
initial window size 5,840) using BGP to

talk to a Cisco router at the other end
(initial window size 16,384). The win-
dow size changes, as expected, when
traffic is exchanged. At the start of the
connection, BGP needs to transmit fairly
high volumes of data; in our scenario,
the window size grew in both directions
to 16,616 within a few minutes before
stabilizing at that level. The theoretical
average time for an attack would thus be
4294967296 / 16616 * 320 Bit / 128.000
Bit/ s / 2 = 5 minutes and 23 seconds.

The value of 5 minutes and 39 seconds
that we recorded for this test confirms
the theory. BGP connections typically
stay up for weeks, or even months; it
typically takes over a minute to establish
a connection and BGP routers do not
open many network connections when
left to their own devices. This makes
them easy targets for attackers who have
plenty of time to check just a few source
ports.

Proactive Protection
Due to the high level of exposure and the
low risk for the attacker, it is important
to take preventive measures. There are a
few approaches to mitigating the effect
of the issues we referred to just earlier.
As a general rule, you will want to avoid
publishing information about your con-
nection and network configuration as

much as possible. Looking glasses, for
example, are far too promiscuous (BGP;
see the “Important Terms” box and [6])
as are some DNS entries.

Many operating systems allow admins
to set the receive window size (see the
“Changing the Window Size” box); a
small value makes the system harder to
sabotage. You should do without win-
dow scaling if possible. As a result,
fewer sequence numbers fit in the
receive window, and the attacker needs
to be more precise, which in turn costs
time and bandwidth.

However, there are limits to this kind
of tuning. If the values you select are too
low, the network performance will suf-
fer. TCP runs slower because the proto-
col software has to wait for acknowledg-
ments rather than transmitting. And it
has to transmit more acknowledgments
(ACKs); the overhead therefore
increases. Let’s look at an extreme exam-
ple: if you have a window size of 10, a
40 byte ACK packet is required for 10
bytes of data, (20 bytes of IP header, 20
bytes of TCP header.)

Well Filtered
Filter rules give you more granular pro-
tection against reset attacks on border
gateways. Routers should only accept
incoming and outgoing traffic with IP

Figure 3: Ethereal monitoring a TCP reset attack over an SSH connection. The attacker

transmits a large number of TCP segments with rising sequence numbers (top window, near

the end of the line: Seq=....) The detail view (center) clearly shows that the reset flag has been

set.

The TCP receive window size is not
fixed. Administrators can modify the
default and maximum size values for
most operating systems.

Cisco IOS: In enable mode, the window
size can be set by entering ip tcp win-
dow-size windowsize.

Linux kernel 2.4 and 2.6 with IPv4:
Modify the values of /proc/sys/net/ipv4/
tcp_rmem and /proc/sys/net/ipv4/
wmem, or enter values for tcp_rmem
and tcp_wmem in /etc/sysctl.conf, and
then call sysclt -p. Refer to [18] for a
detailed HOWTO.

Sun Solaris: On Solaris systems the ndd
command does the trick: ndd -set /dev/
tcp tcp_xmit_hiwat windowsize and ndd
-set /dev/tcp tcp_recv_hiwat windowsize.

Windows 2000 and XP: Modify the val-
ues for GlobalMaxTcpWindowSize (type
REG_DWORD) and TcpWindowSize (Typ
REG_DWORD) in the HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters registry
entry. Refer to [17] for a detailed
HOWTO.

Changing the Window Size

TCP HijackingSYSADMIN

70 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

source addresses that match the router
interface through which the packet
arrived. This reduces the risk of IP
spoofing, and it should be a matter of
course for any router configuration.

Ingress and egress filters protect the
internal network against spoofed packets
from the outside that claim to have inter-
nal addresses, and they protect the rest
of the Internet against spoofers on the
internal network. Cautious admins will
add more filter rules that only accept
BGP traffic from and for known routers.
This makes attacks on the BGP connec-
tion more or less impossible.

Another kind of protection was intro-
duced in 1998: RFC 2385 describes MD5-
based signatures for TCP connections
[7]. This approach creates MD5 hashes
based on a password and all critical TCP
header fields. This allows the receiver to
detect spoofed packets. Of course, the
passwords must be robust to prevent
password crackers such as bgpcrack [8]
using a dictionary attack to crack the
signature. There is a useful overview of
this BGP vulnerability, and others, along
with possible solutions at [9].

Cautious Response
In April 2004, the IETF published an
Internet draft [10] suggesting changes to
TCP’s response behavior, so that a TCP
instance would only react immediately
to incoming RST flags if they exactly
matched the expected sequence number.
If the number was simply within the
receive window but not the next number
up, the instance would respond by set-
ting an ACK flag and dropping the seg-
ment it had just
received. The recipient
of the ACK packet
could then respond by
sending a second RST
(Figure 4). The idea
behind this is that a
spoofer would not see
the ACK packet and
the odds would be no
better than for the first
attempt. If the RTS
packet originated with
a genuine sender, the
sender could respond
to the ACK and close
the connection grace-
fully at the second
attempt.

However, this new behavior intro-
duces a new vulnerability: in a so-called
ACK war, an attacker could flood a vic-
tim with RST packets. If the victim
responds to each RST, the connection
bandwidth is soon taken up with control
traffic, and this would quickly block an
ADSL connection. To avoid this, the sug-
gestion was that each host would ACK a
maximum of 10 RST packets in a period
of 5 seconds.

The draft recommends verifying the
validity of an incoming SYN by transmit-
ting an ACK. All of this behavior is com-
patible with the original RFC 793-based
behavior. The draft uses TCP features to
combat TCP vulnerabilities. The danger
of a DoS flooding attack is still real, how-
ever, despite all the improvements.

Linux has another technique for pre-
venting attacks: the GR Security patch
[11] ensures that kernels 2.4 and 2.6
assign arbitrary source ports. This fea-
ture comes from OpenBSD, like many
of the patch’s other features. Our experi-
ments confirm that the patch really does
prevented remote attacks.

Prevention Needed
The TCP RST and the related TCP SYN
attacks are very dangerous. Any number
of exploits are now available in the form
of scripts and tools, and a simple DSL
connection is all an attacker needs to
take down semi-permanent connections.
Referring to this type of attack, Theo de
Raadt, the OpenBSD project maintainer,
once said: “Lots of people are saying this
is not a problem, but I am sure we will
see a worm using it one day.” ■

[1] Computer Security Institute:
http:// www. gocsi. com

[2] RFC 793, “Transmission Control Pro-
tocol”: http:// rfc. net/ rfc793. html

[3] RFC 1323, “TCP Extensions for High
Performance”:
http:// rfc. net/ rfc1323. html

[4] Open Source Vulnerability Database,
Paul (Tony) Watson, “Slipping in the
Window: TCP Reset Attacks”: http://
www. osvdb. org/ reference/
SlippingInTheWindow_v1. 0. ppt

[5] Open Source Vulnerability Database,
Paul (Tony) Watson, “TCP Reset Spoof-
ing”: http:// www. osvdb. org/ 4030

[6] IPv4 Looking Glass Sites:
http:// www. bgp4. net/ lg

[7] RFC 2385, “Protection of BGP Ses-
sions via the TCP MD5 Signature
Option”: http:// rfc. net/ rfc2385. html

[8] BGP Crack: http:// www. cisco. com/
security_services/ ciag/ tools/
bgpcrack-2. 1. tar. gz

[9] Sean Convery and Matthew Franz,
“BGP Vulnerability Testing: Separat-
ing Fact from FUD v1.1”: http:// www.
blackhat. com/ presentations/ bh-usa-
03/ bh-us-03-convery-franz-v3. pdf

[10] Internet Draft, “Improving TCP’s
Robustness to Blind In-Window
Attacks”: http:// ietfreport. isoc. org/
idref/ draft-ietf-tcpm-tcpsecure/

[11] GR Security: http:// www. grsecurity. net

[12] TCP Connection Reset Remote
Exploit: http:// www. frsirt. com/
exploits/ 04232004. tcp-exploit. php

[13] Libnet: http:// www. packetfactory. net/
projects/ libnet/

[14] Robert T. Morris, “A Weakness in the
4.2 BSD Unix TCP/ IP Software”: http://
pdos. csail. mit. edu/ ~rtm/ papers/ 117. pdf

[15] Laurent Joncheray, “Simple Active
Attack Against TCP”: http:// www.
usenix. org/ publications/ library/
proceedings/ security95/ full_papers/
joncheray. ps

[16] Cert Advisory CA-2001-09, “Statisti-
cal Weaknesses in TCP/ IP Initial
Sequence Numbers”: http:// www.
cert. org/ advisories/ CA-2001-09. html

[17] Dave MacDonald und Warren Bark-
ley, “Microsoft Windows 2000 TCP/ IP
Implementation Details”: http:// www.
microsoft. com/ technet/ itsolutions/
network/ deploy/ depovg/ tcpip2k. mspx

[18] Oskar Andreasson, “Ipsysctl tutorial
– Chapter 3, IPv4 variable reference”:
http:// ipsysctl-tutorial. frozentux. net/
chunkyhtml/ tcpvariables. html

[19] Cert Advisory CA-1995-01, “IP Spoof-
ing Attacks and Hijacked Terminal
Connections”: http:// www. cert. org/
advisories/ CA-1995-01. html

INFO

Figure 4: The modified stack based on [10] requires the RST

sequence number to be an exact match.

TCP-Stack

TCP connection existsData

match but in receive window
Sequence number not an exact

RST Packet

Sequence numbers are synced

Connection stays up

Sequence number exact match
Connection terminated

ACK Packet

RST Packet

SYSADMINTCP Hijacking

71ISSUE 58 SEPTEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

