
52

If your memory is less than perfect,
you can easily lose track of complex
tasks. A written to-do list is an

important first step, but the right soft-
ware tools can really help you plan your
projects. This article guides you through
a simple remodeling job to demonstrate
the use of the Taskjuggler [1] project
management tool.

Just imagine you finally decide to get
serious about refitting your bathroom –
a project you have been postponing for
years. As the manager of this project,
you will need to know which tasks have
to happen when, what kind of help you
will need, and most importantly, when
you will finally be able to take a bath in
your new tub. Our project management
software is Taskjuggler [1] by Chris
Schläger and Klaas Freitag. Taskjuggler
is an open source tool released under the
GNU GPL license.

The Plan
Gantt plans (named after their inventor,
the US engineer Henry Laurence Gantt –

1861 to 1919) became the de facto
standard in project management many
years ago. The plan visualizes tasks,
with defined starting and finishing
points as time bars, and additionally
indicates the dependencies for the tasks.
A Gantt plan highlights the so-called
critical path, that is, the tasks that decide
whether your project will be completed
on schedule or not.

The Gantt plan gives project managers
a graphical overview, allowing them to
keep track of the project’s progress, its
current status, and possible deviations
from the schedule. The overview clearly
shows the dependencies between indi-

vidual tasks. This makes it easier to par-
allelize individual processes, that is, to
allow them to take place at the same
time (start-start conditions.) In a similar
fashion, it is also possible to plan a pro-
cess to coincide with the completion of a
dependent process (end-end condition.)

Parallelization has the advantage of
reducing the total time required for the
project, assuming that multiple pro-
cesses can take place at the same time.
But it also helps you distribute
resources. The resources required for the
bathroom refit include human labor, but
also machines and possibly space. If you
succeed in assigning resources to the
individual tasks at the planning stage, it
is quite easy to see what kind of help
you will need at what stage of the pro-
ject. The Gantt plan refers to important,
intermediate points en route to complet-
ing the project as milestones. Milestones
mark the points in time when specific
tasks have to be completed.

To get started, you need to make a list
of the tasks involved in the bathroom

Taskjuggler is a handy project management tool for large or small projects.

We’ll show you how to organize a simple remodeling job with Taskjuggler.

BY UWE IRMER

Bathroom refitting tasks:

1. Prepare replacement fittings

2. Remove old fittings

3. Install new fittings

4. Commission new fittings and end of
project

Rough Tasks

THE ART
OF JUGGLING

Project management with Taskjuggler

THE ART
OF JUGGLING

w
w

w
.p

h
oto

ca
se.d

e
TaskjugglerKNOW-HOW

52 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

53

refit project. The box titled “Rough
Tasks” provides a first look at the task
list.

You can then go on to specify the
details for each task, subdividing them
into separate subtasks, as shown in the
“Detailed Tasks” box.

At this point, we are consciously
avoiding thinking about the order in
which the individual steps will need to
take place. Instead, we are just concen-
trating on defining the major tasks. You
can take this to any level of detail you
like, although generally speaking, you
should be fine with the level of detail we
have chosen here.

In the last phase of project prepara-
tion, you will need to decide who will be
performing the individual tasks. In our
example, we will be doing the clean up
work ourselves. The material will be
provided by builders’ suppliers, and you
have two professionals to help you: a
qualified plumber for the installation
work and for removing the old tub, and
a qualified electrician for the electrical
installations. And finally, you have your
own family to help you get rid of all the
rubble.

We will be using Taskjuggler to assign
human resources to the individual tasks
and create the schedule.

The Tool
The Taskjuggler project management
tool is really a collection of libraries and
command line tools with a GUI-based
front-end for KDE. Taskjuggler autono-
mously plans individual tasks and
resolves conflicting situations, for exam-
ple, if there is a dependency between the
end of one task and the start of another.

Taskjuggler gives you enough leeway to
define working hours, leisure hours, and
even breaks in the Gantt diagram.
Resources can be assigned to groups for
ease of management, but this is some-
thing we will not need for the bathroom
refit project.

Taskjuggler allows you to assign costs
to individual resources and to define ini-
tial and completion costs for the project.
This means you will be able to budget
your bathroom refit and manage your
cashflow should the project take longer
than you envisage.

The program provides useful reports
organized by topics such as individual
task, progress, or cost. The Gantt dia-
gram visualizes progressive planning
and shows you how resources have been
assigned to tasks. Taskjuggler gives you
a human resources overview, including
availability, load, and cost data. The
resource calendar shows you which
resources are available when and to
what extent.

Taskjuggler is a very powerful tool
capable of handling professional pro-

jects, and it gives
you a full set
of time, resource,
and cost manage-
ment features.
Data input and
management are
both intuitive,
and the tool is
rounded off by the
reporting func-
tions that visual-
ize the current
project status
based on the
parameters of
time, cost, and

utilization of resources.

Planning
The next step is to enter the individual
tasks in Taskjuggler. The program has its
own editor for entering tasks (Figure 1).

When you set up a new project, first
use the editor to define project data such
as the ProjectID (a description of the
project that includes information on the
time frame for the work), the current
date, the time format, and the currency.
The entries for our bath refit project are
as follows:

project bare "Bath Refit" "1.0"
 2005-07-01 2005-08-30 {
now 2005-07-11
timeformat "%Y-%m-%d"
currency "EUR"

01 task Bare "Bathroom Refit" {

02 task repfit "Replacment
fittings"

03 task chkwat "Check water
pipes"

04 task chkhtg "Check heating"

05 task rep "Repairs"

06 task cln "Clean"

07 }

08 task oldfit "Remove old
fittings"

09 task newfit "Install new
fittings"

10 task fini "Finished"

11 }

Listing 1: Subtasks in the
Taskjuggler Editor

The Taskjuggler source code is available
in the download area of the website at
[1]. To build the program, you will need
the KDE developer libraries (kdelibs-dev,
kdelibs-devel, or similar). The package is
bzip2 compressed, so you will need the
tar -j option to unpack it:

tar xfj taskjuggler-2.1.tar.bz2

Change to the taskjuggler-2.1 directory,
and ./configure your Taskjuggler source
code, then go on to build and install by
entering make and su -c 'make install'.

Installation

Figure 1: The Taskjuggler editor is used for entering the project data.

Prepare replacement fittings

1. Check water pipes

2. Check heating

3. Repairs

4. Clean replacement fittings

Remove old fittings

1. Turn off water and heating

2. Remove furniture

3. Remove tub

4. Remove shower

5. Remove tiles

6. Remove ceiling

Detailed Tasks

KNOW-HOWTaskjuggler

53ISSUE 61 DECEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

scenario plan "Plan" {
scenario delayed
"Delayed"
}
}

Costs
One of Taskjuggler’s biggest benefits is
the program’s ability to handle costs and
cost calculations. This keeps us on top of
our budget during the bathroom refit
project and gives us the ability to recal-
culate the project whenever we need to.
The next step is to define cost factors by
entering rate 120.0.

This entry defines the daily wage for
the most expensive worker. Taskjuggler
has an elegant approach to assigning
cost factors based on macros that can be
assigned later. This saves typing during
data entry. The macro for our project
looks like this:

macro allocate_workers [
allocate wo1
allocate wo2 { load 0.5 }
allocate wo3
]

The workforce wo1 through wo3 is cov-
ered by a single macro. The load 0.5
entry shows that the daily wage for the
wo2 label is only half that of the others
(factor 0.5). You can then run this macro
in the context of a subtask by entering
${allocate_workers}. We will be defining
the project resources in the next step:

flags team
resource wo "Workforce" {
resource wo1 "plumber"
resource wo2 "myself"
resource wo3 "electrician"
flags team
}

This groups the
workforce to cre-
ate a team, while
at the same time
assigning people
to the wo1
through wo labels.
If you need to add
more details for
the members of
your workforce,
you can simply
add this data to
the line for the
person involved.
For example, our
electrician is on
vacation between
8.1.05 and
8.10.05.

resource wo3 U
"electrician" { vacation U
 2005-08-01 - 2005-08-10 }

Let’s assume that the plumber has to
rethink the offer he made you and
quotes a higher daily wage; you can
enter the individual daily wage as
follows:

resource wo1 "plumber"
{ rate 100.0 }

After completing this preparation, you
can finally get down to entering and
planning the individual tasks:

task Bare "Bathroom Refit" {
task repfit U
"Replacment fittings"
task oldfit U
"Remove old fittings"
task newfit U
"Install new fittings"

task fini "Finished"
}

In the Taskjuggler editor language, the
task keyword identifies a task. Each task
comprises an identifier, for example
Bare, and a description such as “Bath
Refit.” Subtasks for a task are sur-
rounded by braces. Based on our original
specs for the refit project, the four sub-
tasks for the main “Bath Refit” task are
as follows:

"Replacement fittings",
"Remove old fittings",
"Install new fittings" and
"Finished" zu.

You can now break down the subtasks.
The details in Listing 1 are subtasks for
the “Replacement fittings” subtask.

Repeat this for all other subtasks. To
complete your schedule, we still need a
few details, such as the necessary time
for each task and the worker who will
perform the task.

Deadlines
Let’s start with the first of those items.
“How long does each task take?” The
Taskjuggler editor has a few special
keywords for this, for example, effort
specifies the number of man-days, fol-
lowed by the workforce (resource)
assignments for the task. The length
keyword defines the length of the task
in working days, and duration does the
same for calendar days.

Let’s assume you have asked the
plumber and the electrician to submit an

01 task repfit "Replacement
fittings" {

02 task chkwat "Check water
pipes" {

03 effort 1d

04 allocate wo2

05 }

06 task chkhtg "Check heating" {

07 effort 1d

08 allocate wo2

09 }

10 task rep "Repairs" {

11 effort 2d

12 allocate wo1, wo3

13 }

14 task cln "Cleaning" {

15 effort 1d

16 allocate wo2

17 }

18 }

Listing 2: Subdividing Subtasks

Figure 2: A Gantt plan shows the chronological progression of tasks

and subtasks.

TaskjugglerKNOW-HOW

54 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

offer for their work, and you can esti-
mate how long your part of the refit will
take. The details for the “Replacement
fittings” task might then look like the
example in Listing 2.

Do you remember the workforce iden-
tifiers? wo1 is the plumber, wo2 is you,
and wo3 is the electrician. The “Check
water pipes” task, which you have
assigned to yourself, will take you a day.
And the same thing applies to the
“Check heating” task. Two days have
also been assigned for work to be done
by the plumber and the electrician.
When they are done, you will be taking
over again and finishing up by cleaning
the refitted bathroom; again you expect
this to take you a day.

The depends keyword specifies the
chronological order and defines depen-
dencies between multiple tasks. As we
want Taskjuggler to calculate the dura-
tion, we will be using relative time speci-
fications: “Task 2 can start when Task 1
is completed.” Let’s look at the
“Replacement Fittings” task for a better
understanding of the underlying princi-
ple. The chronological order is as fol-
lows: the “Check water pipes” task is the
starting point for the project. This is fol-
lowed by “Check heating.” The repairs
can start when the two predecessors
“Check water pipes” and “Check heat-
ing” have been completed. And cleaning
can’t start until the repairs have been
completed. In Taskjuggler editor speak,
this looks like Listing 3.

Bare.start is the starting point for the
bathroom refitting project. Its .start
parameter was automatically created by
Taskjuggler. The remaining entries
describe relative points in time, which

Taskjuggler will
evaluate automati-
cally. For example,
!chkwat is the end
point of the
“Check water
pipes” task. An
exclamation mark
indicates a relative
point in time
within a superor-
dinate task (the
“Replacement fit-
tings” task in this
case.) Two excla-
mation marks
define a relative
point in time
within the total
project, that is, a
main task. Based on this, you can enter
the chronological dependencies for all
subtasks and major tasks.

When you are done, press F9 to com-
plete your entries. Taskjuggler checks
the data for syntactical correctness
before going on to calculate the project.
You can then see the task interdependen-
cies in the Gantt plan, which shows you
when tasks start and finish. An example
of a Gantt plan is shown in Figure 2.

Of Mice and Men
Even the best laid plans can go awry,
and a project management tool that does
not let you make changes to reflect your
current situation would be useless. One
example of change might be an unfore-
seen shortage of resources, for instance,
if a worker takes ill. On a brighter note, a
task might be completed far quicker
than you envisaged. For example, when

you check the heating and water pipes
in the bathroom, you might discover
that everything is okay.

You can use the Taskjuggler editor to
modify your project schedule to reflect
the current status. You need to extend
the time parameter to compensate for
the worker’s sick leave. If repairs turn
out to be unnecessary, you can simply
delete the task. You just need to enter
any changes for the resource, time, and
cost parameters using the editor and tell
Taskjuggler to rethink the whole project.

As you have consistently used relative
times, Taskjuggler has no trouble recal-
culating the schedule for the project.
But if you delete a task that other tasks
depend on, you will need to remove
these dependencies manually to get
things to work.

Conclusions
The intuitive Taskjuggler editor gives
users the ability to describe a project
and its component tasks. Taskjuggler
helps you visualize your entries in the
form of an easily readable Gantt chart,
and it gives you a useful collection of
reports for costing and resource plan-
ning. This simple example of refitting a
bathroom demonstrates most critical
planning elements and shows that
Taskjuggler is well-equipped to hander
larger-scale projects. ■

[1] Taskjuggler:
http:// www. taskjuggler. org

INFO

01 task repfit "Replacement
fittings" {

02 task chkwat "Check water
pipes" {

03 effort 1d

04 allocate wo2

05 depends Bare.start

06 }

07 task chkhtg "Check heating" {

08 effort 1d

09 allocate wo2

10 depends !chkwat

11 }

12 task rep "Repairs" {

13 effort 2d

14 allocate wo1, wo3

15 depends !chkwat, !chkhtg

16 }

17 task cln "Cleaning" {

18 effort 1d

19 allocate wo2

20 depends !rep

21 }

22 }

Listing 3: Specifying the Chronological Order

Figure 3: Taskjuggler calculates the cost of a project based on input

data such as the hours assigned to each worker.

KNOW-HOWTaskjuggler

55ISSUE 61 DECEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

