
66

the OpenOffice distribution, and you can
also manage your own macros.

Basic programs are assigned to a mod-
ule and a library, which default to Mod-
ule1 and Standard. A new module will
always contain the Main method, which
is basically an empty framework without
any code (containing only some REM
remarks). Clicking on Edit takes you to
the editor and displays the empty func-
tion framework (Figure 2).

You can use the full range of Basic fea-
tures now. Selecting Help | Contents dis-
plays the OpenOffice Basic Help with a
list of functions (Macros and Program-
ming | Commands | Alphabetical list..).

Now add the following at the start of
the program framework:

Sub Main
Output = "It is " & Time()
MsgBox Output, 0

End Sub

also support the Common Language
Interface (CLI), which allows users to
add their own Javascript and C# pro-
grams. Of all the languages used with
OpenOffice, Basic is perhaps the easiest
option. This article describes how to get
started with creating macros in Basic.

Getting Started
Basic programming starts in the Tools |

Macros menu,
which has two
entries: Record
macro, a macro
recorder for inter-
active use, and
Macro..., which
opens a new win-
dow (Figure 1).

The window
helps you orga-
nize the macros
that accompany

I
f you find yourself repeating com-
plex, multi-step tasks in OpenOffice
[1], it may be time to create a macro.

OpenOffice supports a variety of pro-
gramming options. Version 1.1 intro-
duced the concept of bridges, which
allow users to add their own C, C++,
Java, or Python programs. In version
2.0, which is due for release any time
now, the basic OpenOffice package will

The OpenOffice productivity suite can use a variety of scripts and macros to automate recur-

ring tasks. The easiest approach is to use the integrated Basic dialect. This article helps you get

started with this surprisingly sophisticated programming language. BY OLIVER FROMMEL

MASS PRODUCTION

Schlagwort sollte hier stehenLINUX USER OpenOffice MacrosPROGRAMMING

66 ISSUE 53 APRIL 2005 W W W . L I N U X - M A G A Z I N E . C O M

w
w

w.photocase.de

Figure 1: The OpenOffice Basic macro management window.

Creating Basic Macros in OpenOffice

MASS PRODUCTION

The Sub keyword designates a function,
which is called Main in this case. Actu-
ally, OpenOffice isn’t overly interested in
names and starts parsing at the first
function it finds in the macro module.
Output is a string that includes a con-
stant part, “It is “, and the output of the
Time() function, which gives us the time
of day. The & operator concatenates
these parts to form a single string. You
can leave out the brackets for the Time
function; they don’t effect the output.

Finally, the MsgBox function displays a
dialog box. The first parameter passes
the text to be displayed, and the second
parameter defines the dialog type. The 0
in this example means that the dialog
box will only display an OK button. 1
would additionally give us a Cancel but-
ton, and there are other variants with
Yes/No buttons and other combinations.
MsgBox also returns a value that indi-
cates which button the user has clicked.
Our example does not actually do any-
thing with the return value.

This Document
We need more than simple Basic func-
tions if we want to access OpenOffice
documents, as this involves accessing
the UNO objects and interfaces (see

“Box 1: Complex
UNO, Simple
Basic”). Our
access point to
this object hierar-
chy is ThisDocu-
ment, a keyword
that references the
document in
which the script is
running – this can

be a text document, a spreadsheet, or
even a drawing. ThisDocument is the
parent object that gives you basic meth-
ods for navigating the document tree.

But before we do this, we will declare
some variables; again this is optional
and not too difficult. The Dim keyword
will help us handle the job. The number
of elements in a list (array) needs to be
put in round brackets (10). Basic han-
dles this convention differently from
most other programming languages: the
parameter does not specify the number
of elements but designates the highest
index. Thus, List(10) gives you a
list of 11 elements, List(0)
through list(10) – Basic variables
are not case sensitive.

The script needs to check if it’s
running inside an OpenOffice
text document. To do so, we use
the supportsService() method of
the document reference:

oDoc = ThisComponent U
If oDoc.supportsServiceU
("com.sun.star.U
text.TextDocument") Then

Besides this method, the docu-
ment object also has a promising

looking function called getText(). The
function does not give us the raw text
from the document, but instead a refer-
ence to the text service which in turn
has several methods, including methods
for moving a cursor through the text (for
instance createTextCursor).

The text service has another function
called createEnumeration(), which enu-
merates the paragraphs in a document,
but this still doesn’t give us the raw text.
On the contrary, a paragraph has about
150 paragraph properties that precisely
describe its style, for example.

We can access the normal text
elements in a paragraph by calling
createEnumeration(). If the document
contains a table, OpenOffice will output
an error message at this point because
createEnumeration does not recognize
table elements. We would need to add
some exception handling for this case.

The String() method gives us the raw
text for an element. Basic uses a loop
construction that starts with Do and

67

PROGRAMMINGOpenOffice Macros

67ISSUE 53 APRIL 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 3: The Xray macro is useful for troubleshoot-

ing. It displays UNO object properties in Basic.

OpenOffice has direct support for Basic,
which removes the need for an external
interface. The Basic language itself isn’t
exactly rocket science, but you will need
some of the advanced features of Basic
in order to work with the complex
OpenOffice architecture.

OpenOffice has a language independent
programming interface called UNO (Uni-
versal Network Objects). UNO follows
today’s software design paradigms (with
support for so-called design patterns [2],
services, and interfaces). The sheer bulk
of the developer and [3] and API docu-
mentation [4] attests to the importance

of UNO in OpenOffice programming.

OpenOffice Basic does not support the
full range of UNO features, as the Basic
language itself is quite simple. For
example, Basic does not support com-
plex data types, such as hashes, which
assign values to keywords. This lack of
hash support made it difficult to pro-
gram what I originally thought might be
a simple example: a script that would
count the number of occurrences of a
specific word in a text. A hash (or asso-
ciative array) with the word to look for as
a key would be an ideal solution for this
example. But this would lead to a lot of

extra programming in OpenOffice Basic;
in fact, you would have to implement
your own hash table, which is far
beyond the scope of this article.

In contrast to OpenOffice Basic, the gen-
eral UNO interface is object-oriented.
These contrasting approaches lead to a
few peculiarities: for example, some
methods map directly to properties. In
other words, a programmer does not
need to call a function such as
circle.radius() but can use the
circle.radius attribute directly. This
causes some confusion in practical
applications that use both notations.

Box 1: Complex UNO, Simple Basic

Figure 2: When you create a new macro, OpenOffice generates an

empty Main function, as shown in the integrated editor.

The Print command with the file number
as its first parameter allows us to add
lines to the file: Print #FileNo String.
Without the file number, OpenOffice
opens a dialog box when you call Print.
After adding the lines, we need to close
the file. A call to Close with the file num-
ber as the argument takes care of this.
Listing 1 shows the complete macro.

To launch the script, click on the sec-
ond button from the left in the second
row (see Figure 2). This button runs the
script for the current document. If
OpenOffice discovers a syntax error, it
immediately reports an error executing
the script and displays the error in a dia-

log box. Unfortunately, the error mes-
sages are typically fairly generic and not
much use for troubleshooting (e.g.,
“Object variable not assigned”). A
“generic error” occurs if you try to run
the script while the Help browser is your
current document.

The buttons with the curly brackets
allow you to step through the code. You
can select a variable name and then
click on the button with the spectacles to
view the value of the variable in the
Watch field in the lower left of the win-
dow – again the restrictions mentioned
previously apply. Check “Box 2:
Advanced Troubleshooting” for more
debugging tips.

Conclusion
The UNO interface for OpenOffice gives
script authors a powerful programming
toolbox for office applications. But
OpenOffice programming is not the intu-
itive experience one might hope for. The
system is just as complex as CORBA [8]
or J2EE [9] and assumes knowledge of
modern concepts such as component
architecture and design patterns.

The prerequisite skills necessary to
program OpenOffice macros puts the
task beyond the reach of the casual user,
but amateur and professional program-
mers with the required skills will find
worlds to explore. ■

ends with Loop to parse enumerations.
The break condition can follow either of
these keywords. If the break occurs at
the end of the loop, the script will iterate
through the loop at least once.

Our sample macro writes the text data
that we parsed using this method to a
file. The filename is specified by the File-
name variable. The unusual thing is that
you need a file number to open a file; a
call to Freefile() gives us the number. We
can now pass the file number and name
to Open() to open the file for writing:

Open Filename For Output U

As #FileNo

OpenOffice MacrosPROGRAMMING

68 ISSUE 53 APRIL 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 Sub Main

02 Dim oDoc As Object

03

04 Filename = "/home/oliver/
output.txt"

05

06 oDoc = ThisComponent

07 title$ = oDoc.
DocumentInfo.Title

08

09 If oDoc.supportsService
("com.sun.star.text.
TextDocument") Then

10 FileNo = Freefile()

11 Open Filename For Output
As #FileNo

12

13 oText = oDoc.getText()

14 oParagraphs = oText.
createEnumeration()

15

16 Do While oParagraphs.
hasMoreElements()

17 oPar = oParagraphs.
nextElement()

18 oTexts = oPar.
createEnumeration()

19 Do While oTexts.
hasMoreElements()

20 oText = oTexts.
nextElement()

21 Print #FileNo
oText.string

22 If oText.string =
"" Then

23 Print #FileNo
24 Endif
25 Loop
26 Loop
27 Endif ' If oDoc.

supportsService(..)
28 Close #FileNo
29 End Sub

Listing 1: Simple Text Exporter

[1] OpenOffice:
http://www.OpenOffice.org

[2] Design patterns:
http://en.wikipedia.org/wiki/Design_
pattern_%28computer_science%29

[3] Developer’s Guide:
http://api.OpenOffice.org/docs/
DevelopersGuide/DevelopersGuide.
htm

[4] UNO Reference:
http://api.OpenOffice.org/docs/
common/ref/com/sun/star/module-
ix.html

[5] Starbasic Tutorial by Sun:
ftp://docs-pdf.sun.com/817-3924/
817-3924.pdf

[6] XRay: http://www.ooomacros.org/dev.
php#101416

[7] Macros explained: http://www.
ooomacros.org/dev.php#91896

[8] CORBA: http://www.corba.org

[9] J2EE: http://java.sun.com/j2ee

INFO

The integrated debugger is only useful
for simple Basic types. As the OpenOf-
fice UNO types do not map directly to
Basic types, the debugger will simply
display question marks for UNO objects.
Other methods give you more informa-
tion but require some programming
effort. For example, Dbg_supportedIn-
terfaces() and Dbg_methods(), called as
methods of an object, are quite useful.

A Basic macro can help simplify trou-
bleshooting. The macro gives you a win-
dow with the methods and properties of
the UNO object you need to investigate.

The macro is aptly named Xray [6]

because it really lets you look inside an
object (Figure 3).

After unpacking the Zip file, load the
document in OpenOffice and follow the
instructions. Basically, all you need to do
is assign the Xray macro to the docu-
ment you are working on (Macro | Orga-
nizer, then Libraries). To x-ray an object,
you need to add a line such as Xray.Xray
oDoc to your script.

Incidentally, the XRay website has
another very useful document: a collec-
tion of script fragments [7] with short
explanations by the macro book author,
Andrew Pytonyak.

Box 2: Advanced Troubleshooting

