
process. The Red Hat Linux boot process
is divided into two stages.

The Red Hat Linux
Installation Process
The first stage consists of booting Linux
and creating a RAM disk that is large
enough to perform the installation and
prepare everything for the second stage.

In the second stage, the Red Hat
installer, Anaconda, is started in full
graphical mode for a CD install (even if
all the packages are downloaded from
the network) or in text mode for a full
network install via floppies. In the rest of
this article we will only consider the
graphical installer.

Sometime during the installation
process, the user is given the choice of
what packages to install, broken down
into categories. The user can then decide
to install extra packages or categories or
to leave some out.

The list of packages and categories is
not fixed and compiled into the installer
but is generated at runtime by reading in
an XML file, called comps.xml, which
describes the package groups and the
packages that belong to them.

The structure of the XML file is fairly
straightforward. There is one top level
element, the comps tag, which has a
number of children with the group tag.

One thing you’ll notice is that not
every group mentioned in the comps.xml
file is actually displayed by Anaconda.
Mandatory groups and packages, such as
the core group, need to be installed any-
way, so it it is not much use to give the
user a choice.

Every group has a tag called uservisi-
ble, which Anaconda uses to determine

whether a group should be shown or
not. A program like kickstart, which we
will not discuss here, can also make use
of the names of these groups.

After you have done an install of a Red
Hat based distribution, there will be a
kickstart file called anaconda-ks.cfg in
the home directory of the root user.

In the %packages section in this file,
you can find group ids from comps.xml,
prefixed with the @ symbol.

Each packagereq has an extra attribute
called type, with three possible values:
mandatory, default, and optional, for
example:

<packagereq type="default">U
vim-common</packagereq>

Packages marked mandatory are
installed by default but are never shown
as a choice to the user, whereas the other
two types are.

The packages marked default are
already selected when a category is
chosen and can be unselected. Packages
marked optional are not selected but can
be. By simply changing these attributes,
you can control what gets installed from
a certain category.

Package dependencies are handled
internally by Anaconda, so you don’t
have to provide an exhaustive list of all

Although there are more than
300 Linux distributions, it is still
the case that the most widely

used distributions are members of the
Red Hat family: Red Hat Linux, Fedora,
Red Hat Enterprise Linux, and rebuilds
of Red Hat distros such as White Box
Linux.

One common complaint about Red Hat
Linux is that it is inflexible – too much
software is installed and the setup
process doesn’t allow for customizing.
This view is held especially by users of
distributions that are known for highly
customizable installation.

However. Red Hat is, in fact, very
flexible when it comes to customization.
In this article, I will take a look at
various methods for customizing
Red Hat installation, ranging from decid-
ing which packages get installed by
default, to completely rebuilding the
installer.

Before we can start customizing Red
Hat Linux, it is necessary to dive a bit
deeper into the Red Hat installation

If you’re one of those users who just wants to slip the CD into the drive and

answer the prompts, your are probably content with a Red Hat installation.

But if you are someone who wants it your own way, you might be looking for

a better fit. We’ll show you how to get it. BY ARMIJN HEMEL

Customizing Red Hat Installation

Made to Fit

58 February 2005 www.linux-magazine.com

Red Hat Custom InstallSYSADMIN

w
w

w
.sxc.hu

Armijn Hemel is a
student of computer
science at Utrecht
University in the
Netherlands, a free-
lance writer/
journalist, and UNIX
system administrator.

T
H

E
 A

U
T

H
O

R

dependencies to make sure that every-
thing you need is installed. This is only
true for versions of Red Hat Linux newer
than Red Hat 9.

For Red Hat 9 or older, some additional
work needs to be done, but since these
versions are already quite old, we will
not go into that. The package dependen-
cies are described in two files, hdlist and
hdlist2, which can be found in the same
directory as comps.xml in the installation
tree. Later on we will see how these files
can be generated from a collection of
RPM files.

After the user has finished selecting
packages, Anaconda discovers the
dependencies for all selected packages
using hdlist and hdlist2, builds a list of
packages to install, and eventually
installs the packages. So just by chang-
ing comps.xml, you can already do a lot
of tweaking.

The easiest way to test your changes is
to do a network install. Simply set up an
FTP site on your network with a full
copy of Fedora Core (we used Fedora
Core 3), in the same way the official FTP
mirrors have. Fedora provides an ISO
image to boot from and use for CD
installs. The advantage of the CD over
floppies is that with the CD, the graphi-
cal installer will be booted, but with the
floppies, only the text installer will be
started.

After modifying the comps.xml file,
you should overwrite the comps.xml file
in $arch/Fedora/base with your own
copy – where $arch is either i386 or
x86-64, depending on what architecture
you have.

Then burn the boot.iso boot image to a
CD to get the fully graphical installer so
you can see your changes, boot from it,
and, in the installer, point the download
location for the files to the right directory
on your FTP server.

Adding Packages
The method mentioned above works,
except that it only works well as long as
you limit yourself to the packages that
are in the distribution. If you want to add
other packages that are not in the distrib-
ution, you need to do some extra work.

Remember Anaconda resolves depen-
dencies by itself using the two files hdlist
and hdlist2. Simply adding packages to
comps.xml doesn’t work. The installer

explicitly uses hdlist and hdlist2. Regen-
erating hdlist and hdlist2 is, luckily, not
that hard. Before we can begin, we need
to install a few packages:
• comps-extras
• anaconda
• anaconda-runtime
The development tools in these packages
expect to work on a build tree, which
needs to have the following layout:

i386/
i386/Fedora/
i386/Fedora/RPMS/
i386/Fedora/SRPMS/
i386/Fedora/base/

Next we need to set a few environment
variables, which the tools expect to find:

export BASE=<parent directory U

of our buildtree>
export PYTHONPATH=/usr/lib/U
anaconda
export PATH=$PATH:/usr/lib/U
anaconda-runtime

The RPMS directory in the build tree
should be filled with the Fedora RPMs
and any additional RPMs you want to
install. To generate hdlist and hdlist2,
you need to use the following command:

genhdlist --productpath=U
Fedora $BASE/i386

The productpath for nearly all tools
defaults to RedHat, but this setting can
be overridden on the command line if
you want to re-brand your distribution.

Before these files can actually be used,
two additional steps need to be taken.
One of these steps is to determine the
order of the packages for the install.
Anaconda installs the most important
packages first. Without this information,
it cannot install and it will abort the
installation process.

To generate the pkgorder file, you
should copy your comps.xml to $BASE/
i386/Fedora/base and run the following
commands:

pkgorder $BASE/i386 i386 U

Fedora > $BASE/pkgorder.txt
genhdlist --fileorder $BASE/U
pkgorder.txt --productpath=U
Fedora $BASE/i386/

As a final step, we copy all RPMs plus
additional packages to the right directory
on our FTP site and overwrite comps.
xml, hdlist, and hdlist2 with our own
copies. We can then boot a fresh install
with a CD install.

One of the things you have to keep in
mind is that you have to make sure that
the RPMs you add will install cleanly on
the system in the first place. It makes no
sense to use RPMs that will not install
properly. Always test that packages actu-
ally work before you start adding them!

Making Custom CDs
So far we have only used FTP to install
our new distribution, but installing from
a CD image is often a lot more con-
venient.

Creating CD images is slightly different
compared to the process we saw earlier.
Again, we start by creating hdlist and
hdlist2 and determine the pkgorder:

genhdlist --productpath=Fedora U

$BASE/i386/
pkgorder $BASE/i386 i386 U

Fedora > $BASE/pkgorder.txt

Next, the boot images will have to be
rebuilt:

buildinstall --pkgorder $BASE/U
pkgorder.txt --comp dist-3 U

--product Fedora --version 3 U

--release "applepie" --prodU
path Fedora $BASE/i386

For buildinstall to work properly,
two additional packages should be
installed:
• netpbm-progs
• syslinux
Both packages contain tools that are
used in one of the scripts to convert a
PNG file (which can be found in the
fedora-logos package) to a .lss file for the
splash screen at boot time. If you forget
to install these, the boot images will be
made but they will fail to boot.

Another tool that needs to be installed
is mkisofs, because it is used to create
boot.iso. Unfortunately, the scripts don’t
check if these tools are installed and
will, in some cases, happily continue if
the tools can’t be found.

Because the distribution is larger than
one CD, it should be split accordingly:

59www.linux-magazine.com February 2005

SYSADMINRed Hat Custom Install

In some cases, such as flaky CD-play-
ers or el-cheapo media that you don’t
entirely trust, it might be a good idea to
run the tests though. The check works
by implanting an MD5 sum in the ISO
file:

implantisomd5 Fedora-disc1.iso

Before you burn the ISO to CD, you can
check it with the checkisomd5 tool:

checkisomd5 --verbose Fedora-U
disc1.iso

If you decide to use checksums (which is
highly advised), you will have to make
sure you burn it the right way. The
checksums will fail if the CD is burned
as “track at once” (even though it will
install just fine), so you will have to burn
it as “disk at once” or “session at once.”

Rebuilding comps.rpm
When we mentioned that a few files
should be overwritten in the $arch/
Fedora/base directory on our FTP server,
we deliberately ignored the comps.rpm
file. Even though it is used by Anaconda,
it isn’t that important for an install.
However, when the system is up and
running, it is used for installing software
via one of the menu entries to add and
remove software.

You can verify this by adding a few
packages to the distribution as described
earlier, launching system-config-packages
from the command line or via the menu,
and seeing that your extra software does-
n’t show up in the menu. In fact, we
have used the default Fedora comps.rpm
file.

The comps RPM is created in a few
steps. The reason that it can’t be done in
one step is because not every bit of infor-
mation that is needed is available
beforehand, such as which package is on
which CD.

Because the comps RPM file has to be
on the CDs itself (and thus influences
things like how the packages are distrib-
uted over the CDs), there is a bit of a
chicken and egg problem.

Fedora provides a so called spec-file
with which the comps RPM file can be
regenerated.

The spec-file is not quite ready to use.
Two variables need to be defined:

%define basedir U

/path/to/$BASE/i386/Fedora/base
%define compsversion <version>

In the case of Fedora Core 3, compsver-
sion would be 3. Obviously, the RPM
should be on the CDs, so it should be
mentioned in hdlist and hdlist2 for
Anaconda to find it during the install.
These files need to be in the RPM itself,
so we have to create a placeholder RPM.

First we generate hdlist and hdlist2:

genhdlist --productpath=Fedora U

$BASE/i386

The build script inside the spec-file
expects a few files to be there, including
a file called .discinfo.

The problem is that this file is
not created until splittree.py is run.
A simple workaround is to touch this
file:

touch $BASE/i386/.discinfo

Next we build the RPM:

rpmbuild -bb comps-fedora.U
spec

copy the resulting RPM to $BASE/i386/
Fedora/RPMS and rerun:

genhdlist --productpath=Fedora U

$BASE/i386

to add it to hdlist and hdlist2.
Of course, this is just a dummy and it

cannot be shipped; in fact, system-
config-packages will even refuse to run
because of the empty .discinfo file.

After splitting the distribution and
rebuilding hdlist and hdlist2 for inclu-
sion on the first CD, as shown earlier, the
comps RPM should be rebuilt, but with
the basedir set to /path/to/$BASE/i386-
disc1/Fedora/base:

rpmbuild -bb comps-fedora.spec

and copied over the old placeholder
RPM, as well as to the base directory for
the first CD:

cp comps-<somedate>.rpm U

$BASE/i386-disc1/Fedora/U
base/comps.rpm

splittree.py --arch i386 U

--total-discs 8 --bin-discs 4 U

--src-discs 4 --release-string U

"Fedora" --pkgorderfile U

$BASE/pkgorder.txt --distdir U

$BASE/i386 --srcdir U

$BASE/i386/Fedora/SRPMS U

--productpath Fedora

Furthermore, you will have to make
absolutely sure that the files in the RPMS
and SRPMS are RPM files or the scripts
will fail.

Because the distribution is split, hdlist
and hdlist2 are not quite accurate any-
more and should be rebuilt once again,
this time with information specifying
which CD holds which package:

genhdlist --fileorder U

$BASE/pkgorder.txt U

--withnumbers U

--productpath=Fedora U

$BASE/i386-disc[1-4]

The numbering is important ! Without it,
the installer doesn’t know from which
CD to get a particular package and you
end up swapping CDs a lot.

After that you can make ISO images
and burn the CDs. The first CD should be
made bootable:

mkisofs -b isolinux/isolinux.U
bin -c isolinux/boot.cat -J U

-p "info@example.org" -V U

"Fedora disc 1" -r -T -v -A U

"Fedora/i386 1" -o ../Fedora-U
disc1.iso -no-emul-boot -boot-U
load-size 4 -boot-info-tableU
i386-disc1

The other CDs can be burned without
the boot options.

If you have ever installed Fedora, you
will probably have seen the CD check
(and skipped it).

60 February 2005 www.linux-magazine.com

Red Hat Custom InstallSYSADMIN

[1] Red Hat: www.redhat.com

[2] Fedora Project:
http://www.redhat.com/fedora/

[3] White Box Linux: http://www.
whiteboxlinux.org/howto.html

[4] http://rau.homedns.org/twiki/bin/view/
Anaconda/AnacondaDocumentation
Project

INFO

Note that it is renamed to comps.rpm
because Anaconda expects it to be there
during install time.

Rebuilding the Installer
Even though the installation can already
be tweaked just by editing the comps.xml
file and adding/removing packages to
the distribution, there are still cases
where this is not enough. An example
would be if you have two different types
of clients that are very similar, but differ
slightly, for example, a desktop without
compiler and kernel sources and a desk-
top with a compiler and kernel sources.
Even though this might be possible by
using just comps.xml, this solution is
cumbersome and a lot of work.

The much easier solution is to add (or
remove) installation targets in Anaconda
itself. The source for Anaconda is avail-
able as a source RPM, or via CVS. In the
source tree, there is a directory called
installclasses with a few Python files.
These files describe the installation tar-
gets, such as Personal Workstation or
Server, and are used at runtime to gener-

ate the list of classes you can choose
from during an install.

Adding your own class is fairly
straightforward: you simply copy or
adapt an existing class. There are quite a
few options you can tweak in these
classes, such as whether or not the pack-
age selection should be skipped
altogether and whether to use the default
package selection or not. In an install-
class, there are a few things that can be
overridden.

The setGroupSelection method is used
for package selection. To add a group,
supply its group ID from comps.xml.

The sortPriority variable is used to
determine the place the install class gets
in the overview of available install
classes. The id and name should also be
changed for your installclass.

Finally, the RPM has to be rebuilt. The
easiest way to do this is to pack the
(modified) sources into a tarball and run
rpmbuild on it:

tar jcvf U

anaconda-10.1.0.2.tar.bz2 U

anaconda-10.1.0.2

rpmbuild -tb U

anaconda-10.1.0.2.tar.bz2

To be able to use the new installer
classes, you need to copy the RPMs that
you just created to the RPM directory
before building the complete install
images.

Releasing your own Distro
The ultimate act of customization is to
create your own distribution. If you
really want to roll your own distribution
and actually distribute it, you will have
to keep in mind that some files in
Fedora, such as the artwork, are copy-
righted by Red Hat and should be
replaced.

Apart from the various legal issues
related to trademarks and copyrights,
there are also other things you’ll need
to consider before you start your own
distribution, such as how you are going
to handle things like updates and
support. ■

61www.linux-magazine.com February 2005

SYSADMINRed Hat Custom Install

Advertisment

