
56

Your old hard disk is full up to
the brim with data, and you are
thinking about buying a new

disk. To reduce the impact on your fam-
ily budget, you decide to sell the old
hard disk via one of the many online
auction sites.

In the course of time, your whole fam-
ily will have left personal traces on the
disk – and of course, you would prefer to
remove personal documents, letters, dis-
missal notices, applications, photo al-
bums, and access credentials from the
disk. Luckily, you have Linux, and a
one-liner at the command line is all it
takes at a pinch.

You might already know how to delete
a file or a directory. GUIs all adopt simi-
lar approaches: you just click on the file
or directory to select it, and then press
the [Del] key to send the file off to the
happy hunting grounds – or that’s what

you might think. Even if the application
doesn’t just move your files to the trash
can, the content of the file is still stored
somewhere on your disk in segments of
various sizes. Old data doesn’t actually
disappear until you write new data, and
start to fill up the disk again.

Typing rm at the command line is no
help either: the rm command simply re-
moves entries in the filesystem journals.
Without these entries, the filesystem has
no way of locating the data, but this
doesn’t mean that the data just disap-
pears.

Data Deletion Background
The following command deletes the my_
data/ directory, its subdirectories, and
any files they contain without prompting
you to confirm.

rm -rf my_data/

Strictly speaking, what you have actually
done is to remove the name tag for all
these files and directories. The command
simply deletes the entry in the file allo-
cation table. Each partition needs an
overview that tells it where files and di-
rectories are physically stored on the

Backups are a common topic, but you’ll hardly hear anyone mention

safe data deletion. BY MARCUS NASAREK

Safely deleting data

CLEANUP

01 #!/bin/bash

02 # showSector.sh

03 MAX = 1000

04 for ((i=0;i<=$MAX;i=$i+1));

05 do

06 val=`dd if=$1 skip=$i
bs=512 count=1 2>/dev/null |
hexdump -v -e '"%_p"' | fgrep
$2`

07 if ["$val"];

08 then

09 echo -e "Sector $i:\
n$val"

10 fi

11 done

Listing 1: Sector Search

Deleting DataKNOW-HOW

56 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

disk. This approach is shared by all
modern operating systems, although
there are some differences in the way
they store and read data.

But the important thing is that, when
you “delete” a file or directory, the sys-
tem simply removes the label from the
table, thus freeing up some space. Physi-
cally removing the data stored in the
space the label points to would mean too
much computational effort.

In other words, you stand a good
chance of retrieving files you deleted in-
advertently if you avoid write access to
the partition and start looking for the
lost file straight away. You will find a de-
scription of the steps for retrieving de-
leted data on an Ext2 partition using
simple tools at [1]. And the HOWTO at
[2] gives you more details.

Even reformatting or repartitioning a
drive will not really help you get rid of
unwanted data. When a disk is for-
mated, a modern operating system will
just rewrite the file allocation table, and
repartitioning just changes the entries in
the partition table on your disk. The data

may be lost somewhere in data nirvana,
but it is definitely still on the disk.

Looking for Tracks
You do not need a lot of background
knowledge to retrieve deleted data on a
disk. The box labeled “Partitions” ex-
plains how the hard disk and the operat-
ing system manage files and directories.

If you are just looking for specific
search keys or strings, such as access
credentials or personal data, commands
such as dd, hexdump, and fgrep are

probably all you need. You will require
root privileges for the disk for most of
this.

A USB memory stick is a good candi-
date for experiments. You can format the
“disk” with various operating systems,
and fill it up with test data. Let’s assume
the device you would like to investigate
is /dev/sda; the first partition on the de-
vice would then be /dev/sda1.

You can use the hexdump hex editor to
browse the sectors in the partition and
help you find your way around the exist-

01 john@jack:~$ sudo ./showSector.sh /dev/sda1 Sesame Sector 101:

02 This is a secret. The password for the cave is "Open Sesame!".

03 But don't tell anyone!...

04 ...

05 ...

06 ...

07 ...

08 ...

Listing 2: So you thought you deleted it?

advertisement

KNOW-HOWDeleting Data

ing data. The following command cre-
ates a dump for the drive, and outputs
any printable characters as ASCII code.
You can see the content of any deleted
files – apart from non-standard charac-
ters – immediately.

hexdump -v -e '"%07.7_ad: " U
60/1 "%_p" "\n"' U
/dev/sda1 | less

If this view mode is not to your liking,
you might prefer to launch Midnight
Commander in a console window, and
to experiment with the view mode. Mid-
night Commander is a file manager that
can also display data in hexadecimal for-
mat.

Of course, the files will not necessarily
be stored in contiguous sectors on the
disk; in fact, they might be spread all
over the disk; experts refer to this as
fragmentation. It is all a matter of how
the target operating system organizes its
storage space to achieve best possible
read and write access times. But as a file
will always occupy at least one cluster,
you have a good chance of discovering
small text files of less than 4096 bytes in
one piece.

This technique is not much use as a
systematic approach to searching for
specific files. If you know that a certain
string occurs in a file that you would like
to retrieve (for example LaTeX files al-
ways start with /document); a short
script can help you restrict the search.
Just pass the drive, the search key, and
the number of sectors to search to the
script in Listing 1. If your search returns

results, you can
then move on to in-
vestigating the sec-
tors in question
more closely.

Running the script
shown in Listing 1
creates the output
shown in Listing 2
when searching for
the word Sesame on
device /dev/sda1.

You need the dd
command, with the
skip and count pa-
rameters, to investi-
gate the location.
skip lets you skip a
certain number of

blocks. The count option quits the pro-
gram after the specified number of
blocks. The script gives us a value for
the skip parameter.

The count parameter returns the
length of the area under investigation.
Both values can be modified slightly to
investigate the site of the match. A clev-
erly crafted combination of these param-
eters will allow you to copy the areas
that you are interested in. For example, if
sector 32 contains an interesting string,
you could use the following command to

investigate the 5 sectors surrounding this
location:

dd if=/dev/sda1 skip=30 count=5U
bs=512 2>/dev/null | hexdump U
-v -e '"%_p"' | less

This example just demonstrates the tech-
nique. Disk editors will probably be your
tool of choice for analyzing or retrieving
larger files from the raw data on a disk.
A disk editor helps you navigate the
masses of data and dump the interesting
bits.

Professional data recovery services use
surface analysis techniques to retrieve
data from areas of the disk that have
been rewritten. These surface analysis
techniques leverage the fact that the
write head may not hit the old track
square, thus leaving residual data at the
sides.

Safe Deletion
In the light of all this, you might prefer
to use a standardized deletion method to
delete data and rule out any possibility
of recovery. The following are probably
the best-known approaches:
• BSI guidelines for safeguarding classi-

fied documents on data processing
systems (VSITR), Report No. 11, [BMI]

The special device files, /dev/random
and /dev/urandom, use a kernel-based
driver to generate pseudo-random
numbers. The term “pseudo” is
indicative of a well-known drawback
in computing. Computers can’t generate
genuine random numbers, although
they can generate more-or-less random
values. This said, /dev/random and /dev/
urandom generate numbers with a
sufficient degree of randomness for
most cryptographic applications on a PC.

When generating random sequences,
the kernel-based random number
generator draws on various internal
values and attached devices to achieve
sufficient entropy. Entropy expresses the
degree of randomness of a sequence of
numbers generated in a specific period
of time.

Applications read a bytestream from the
/dev/random and /dev/urandom files. In
contrast to /dev/urandom, /dev/random
only provides a byte if a sufficient degree
of entropy has been achieved. If this is
not the case, the device blocks the

output until sufficient data has accumu-
lated to ensure a good level of entropy
for the values.

As it can take awhile for this to happen,
the non-blocking I/ O mode lets you re-
move the block, but this does not
improve the output speed. The bytes
provided by /dev/random give you
cryptographically stronger random
numbers, and they are safe enough to
use as longer ciphers and as high-
quality key material.

/dev/urandom does not honor the
level of entropy mandated by the kernel-
based generator. Lower entropy does
not interrupt the byte stream.

This fact makes the random numbers
more “pseudo” than ever, but you have
to remember that it isn’t always neces-
sary to aim for top marks in cryptogra-
phy.

In fact, /dev/urandom is fine for tempo-
rary keys, such as session keys in web
sessions, for filling up disk space with
noise, or for short-term authentication in
challenge-response scenarios.

Pure Coincidence?

01 #!/bin/bash

02 # Parameter $1 is the device to be deleted

03 BLOCKSIZE=8192

04 echo -e "Device to delete: $1\nBlock size for
write: $BLOCKSIZE"

05 echo "[`date +"%a %T"`] Round 1"

06 d if=/dev/zero of=$1 bs=$BLOCKSIZE

07 echo "[`date +"%a %T"`] Round 2"

08 d if=/dev/urandom of=$1 bs=$BLOCKSIZE

09 echo "[`date +"%a %T"`] Round 3"

10 dd if=/dev/zero of=$1 bs=$BLOCKSIZE

11 echo "[`date +"%a %T"`] $1 deleted"

Listing 3: A Safer Approach

Deleting DataKNOW-HOW

58 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

• the 5220.22-M standard by the US
Department of Defense, [DOD]

• the Bruce Schneier algorithm, [BSA]
• the Peter Gutmann algorithm, [PGA]
The above mentioned algorithms over-
write the sectors multiple times with
specific data patterns. The patterns com-
prise the bytes 0x00, 0xFF, and random
values. In order to generate genuinely
random data, and to make it impossible
to subtract this data from the read sig-
nals, most approaches use random num-
ber generation.

Linux gives users a high level of secu-
rity based on special device files such as
/dev/urandom, which creates simple
random data. /dev/zero gives you any
number of null bytes (0x00). A combina-
tion of both gives you all the tools you
need.

The box titled “Pure Coincidence?”
gives you some background information
on the quality of the two random num-
ber generators: /dev/random and /dev/
urandom. Only /dev/urandom is genu-
inely capable of producing a stream of
random numbers for something as big as
a hard disk.

The two files, /dev/zero and /dev/
urandom, can be used in combination

with one of the above mentioned ap-
proaches. For home use, running the
script shown in Listing 3 should be fine.
But take care to choose the right device
if you want to be sure to remove the tar-
get data irretrievably.

The script in Listing 3 first fills the
disk with zeros, then with random data,
and then with zeros again. Three rounds
are normally sufficient. On the down-
side, the program will take a few hours
to delete an 80 GB hard disk.

Data protection officers will typically
opt for seven rounds, as does the US
DOD 5220.22-M standard. The Peter
Gutmann algorithm – which is the most
modern of our candidates from a techno-
logical point of view – mandates 35
rounds and requires a lot of patience on
the part of the user. If you check the disk
after completing the process, you should
see nothing but zeros.

Deleting Individual Files
Something similar to the approach
shown by the script in Listing 3 can the-
oretically be applied to delete a single
file from a disk. But this program is not
up to recursive deletion of whole direc-
tories, and you might prefer to look for

an alternative or to enhance the program
to meet your needs.

Applications such as Wipe give you
more convenience. Most distributions
include the tool, which lets you delete
whole directory trees:

wipe -r directory

However, you can only rely on Wipe if
you disable your hard disk’s write cache.
The program requests exclusive access
to the disk for each round, as the project
homepage explains [6].

Under normal circumstances you
should be fine with a kernel that sup-
ports mandatory locking, assuming you
remember to specify the mand option
when mounting. If your system does not
fulfill these requirements, or if the file-
system moves files that it overwrites to
a different location, programs such as
Wipe will be no use, or even worse, as
they give you a false sense of security.

Wipe uses Peter Gutmann patterns to
create the strings it uses for overwriting.
To do so, it accesses the special /dev/
urandom and /dev/random files, which
provide the required level of entropy. To
speed things up, Wipe also uses the Mer-
senne Twister pseudo-random number
generator (PRNG).

Conclusions
It is interesting to note that the US De-
partment of Defense stipulates physical
destruction of magnetic media contain-
ing highly confidential data. Whenever
you handle sensitive data, you should
always be aware that there is no such
thing as perfect software. On a brighter
note, Linux tools should give most users
more than enough security. ■

[1] Retrieving deleted data on Linux:
http:// wiki. yak. net/ 592

[2] Retrieving data from an Ext2 file
system: http:// www. faqs. org/ docs/
Linux-mini/ Ext2fs-Undeletion. html

[3] Guidelines for handling confidential
data in US offices: http:// www. dss. mil/
isec/ nispom_0195. htm

[4] Bruce Schneier’s homepage:
http:// www. schneier. com

[5] Peter Gutmann’s homepage: http://
www. cs. auckland. ac. nz/ ~pgut001

[6] Wipe: http:// wipe. sourceforge. net

INFO

A hard disk manages the data it contains
in sectors of 512 bytes. Modern hard
disks use Logical Block Addressing (LBA)
to number the sectors in sequence. At
the same time, the hard disk controls
and monitors a number of different pa-
rameters and provides interfaces for ac-
cessing them.

The parameters include various temper-
ature measurements, but most impor-
tantly, a map of bad sectors. The device
tags sectors as bad and does not allow
access to them. If you notice a rapid in-
crease in the number of bad sectors, you
can expect a total hard disk failure in the
near future.

Sectors marked as bad are not available
for normal access, although they may
still contain data. Experts can use special
tools to access these sectors, however,
they are unlikely to contain top-secret
data.

A hard disk must contain a partition,
which in turn groups a certain number of
sectors. The partition table points the
way to the partitions. The partition table
is located in the first sector, the so-called
Master Boot Record (MBR), starting at

byte 446 with a length of 64 bytes. The
MBR also contains the boot loader.

The operating system manages the data
for a partition in a kind of database that
can have a table structure. This is the
case with the File Allocation Table (FAT):
DOS and Windows used a number of
FAT variants known as FAT12, FAT16,
and FAT32.

Linux supports a large number of file sys-
tems. Ext2, Ext3, and ReiserFS are com-
mon. The last two use a journal, some-
thing similar to a genuine database, to
provide extremely effective entry man-
agement, which offers a number of ad-
vantages, especially with larger parti-
tions. On the downside, this does make
it more difficult to locate deleted data.

Filesystems group sectors to form clus-
ters for better performance. Depending
on your choice of filesystem, the clusters
can be of different sizes. If you have a
cluster size of four kbytes, a file will typi-
cally occupy an integral multiple of this
number, or one cluster at least. A file
containing a single byte of content thus
occupies at least 4096 bytes of disk
space.

Partitions

Deleting DataKNOW-HOW

60 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

