
34

Many scripts treat Bash as if it
were capable of little more than
calling external programs. This

is surprising, since version 2 of the de-
fault shell has a command set that cov-
ers everything from complex string ma-
nipulation, through regular expressions,
to arrays; useful functions that make ex-
pensive program calls redundant.

The main advantage of internal func-
tions is that the shell does not need to
spawn a new process, which saves pro-
cessing time and memory. This capabil-
ity can be important, particularly if you
need to launch a program like grep or cut
in a loop, as the completion time and
memory consumption of a script can ex-
plode if you’re not careful. This article

describes some simple techiques for
speeding up your Bash scripts.

Benchmarking
The following scripts evaluate an
Apache logfile on a website for compari-
son’s sake. If you are interested in which
pages have been requested, you need to
isolate the GET string from the log, as
follows:

84.57.16.30 - - U
[21/Oct/2005:04:18:26 +0200] U
"GET /favicon.ico HTTP/1.1" U
404 209 "-" "Mozilla/5.0 U
(X11; U; Linux i686; de-DE; U
rv:1.7.5) Gecko/20041122 U
Firefox/1.0"

Listing 1 shows an approach that many
Bash scripts use. The call to cat in Line 3
first reads the whole logfile, and hands it
to the for loop as a parameter list, mean-
ing that Bash has to cache the contents
of the file first. In Line 5, Listing 1 then
goes on to call the external cut program
for every single log entry. Running on
750 MHz Pentium III machine, the script
took over 18.5 seconds to parse a 600
Kbyte Apache logfile.

In contrast to this, Listing 2 took just
3.3 seconds, which is almost six times as
fast: it uses file descriptor 3 to open the
file, and it uses the Request variable to
process one line at a time in the loop,
meaning that Bash will only ever need to

01 #!/bin/bash

02 IFS=$'\n'

03 for l in `cat access.log`; do

04 IFS=" "

05 echo "${l}" | cut -d" " -f7

06 done

Listing 1: External Log
Evaluation

01 #!/bin/bash

02 exec 3<access.log

03 while read -u 3 Request; do

04 Request="${Request##*GET }"

05 echo "${Request%% HTTP/*}"

06 done

Listing 2: Internal Log
Evaluation

01 #!/bin/bash

02 exec 3<$2

03 while read -u 3 line; do

04 if [-z "${line/*${1}*}"];
then

05 echo "$line"

06 fi

07 done

Listing 3: Internal grep

In the old days, shells were capable of little more than calling

external programs and executing basic, internal commands. With

all the bells and whistles in the latest versions of Bash, however,

you hardly need the support of external tools. BY MIRKO DÖLLE

SCRIPT WORKOUT
Script tuning in Bash

SCRIPT WORKOUT

Bash TuningCOVER STORY

34 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

35

cache a single log entry. The script then
removes the characters from the start of
the line, up to and including GET, and all
the characters from the end of the line
up to and including HTTP/.

You could save another tenth of a sec-
ond by removing all the characters up to
and including the blank from the end of
the request, as this simplifies the string
comparison performed by the internal
Bash function.

Replacement Functions
The basename and dirname tools are
easily replaced using Bash functions.
You need the ${Variable%Pattern} string
function, which removes the shortest
matching pattern from the end of the
string, and ${Variable##Pattern}, which
removes the longest matching pattern
from the start of the string, to do this. A
simple alias is actually all it takes to re-
place dirname:

alias dirname=echo ${1%/*};

The functionality for basename is not
much more complex, although you do
need to consider the fact that basename
can remove file extensions, which means
combining both string functions:

function basename() {
 B=${1##*/}
 echo ${B%$2}
}

It is more efficient to store the result of
the string truncation in the B variable
than to set the first parameter and pass
the second parameter.

It doesn’t make sense to replace every
single program call with internal Bash
commands. Listing 3 is a good example
of this: it implements a rudimentary
grep. Although the script comprises just
a few lines of code, and may look effi-
cient at first, it takes over two minutes to
search for a filename in the 600 Kbyte
web server log – grep turned up with the
goodies in less than 0.1 seconds.

The search pattern is the biggest per-
formance killer. If a match is found, the
line parsed from the file is completely
deleted by a search and replaced in Line
4. The search pattern, *${1}*, tells Bash
to search every single character in the
line for a match. If you use #*${1}* as
your search pattern, telling Bash to

search at the start of the line only, Bash
only does one comparison per line, and
this reduces the script runtime to less
than three seconds.

Dissecting IPs
Although the string functions were not
the bottleneck in the previous example,
there may be more elegant, and quicker,
ways of dissecting strings in some sce-
narios. For example, if you need to sort
the IP addresses from which requests
originated, you can’t use sort or a simple
lexical sort function. This would put
217.83.13.152 before 62.104.118.59. In-
stead, you need to extract the individual
bytes in the IP address, convert them to
a sortable format, sort them, and finally
display the results without duplicates.

Listings 4 and 5 show two possible ap-
proaches with completely different per-
formance characteristics. The script in
Listing 4 starts by parsing the logfile line
by line (Line 3), and then extracts the
first IP address in Line 4. Lines 6 through
10 remove one octet at a time from the
rear of the IP address, and store the ad-
dress byte as a decimal in the IP array.

In Line 11, the call to printf, which is
also an internal Bash command, outputs
the four octets in the IP address as dot-
separated, three-digit decimals with zero
padding. The last line pipes the output
to the external sort program, before uniq

removes the duplicates. Listing 4 takes
about 2.6 seconds to process a 600 Kbyte
Apache logfile.

Compacting Functions
The program in Listing 5 does the same
job as Listing 4, but it takes only 1.6 sec-
onds, an improvement of almost 40 per-
cent. The string functions in Lines 4
through 10 in Listing 4 are what cause
the difference in runtimes: instead of ex-
tracting the IP address first, and then
using seven function calls to dissect it,
Listing 5 calls Bash’s internal read func-
tion with the special IFS variable. Bash
treats the characters stored in IFS as pa-
rameter separators – these default to the
space, tab, and newline characters.

Line 3 of Listing 5 defines the dot and
blank as separators. Calling read with
the -a switch tells the function not to
store a whole line in a variable, but to
use the separator from IFS, and to write
the input to the IP array variable one ele-
ment at a time. The octets that make up
the IP address go straight to the IP[0]
through IP[3] variables on calling read.
Thus, a single function call in Listing 5
replaces Lines 3 through 10 in Listing 4.

Incidentally, you could replace the ex-
ternal program calls to sort and uniq
using Bash functions, but you can’t ex-
pect Bash to match sort, a C program, for
efficiency. Just as in real life, some of
your Bash tweaking may go unrewarded,
but coding for efficiency still pays off in
the long run. ■

01 #!/bin/bash

02 function GetIP() {

03 while read -u $1 Request; do

04 tmp="${Request%% *}"

05 IP[1]="${tmp%%.*}"

06 IP[4]="${tmp##*.}"

07 tmp="${tmp%.*}"

08 IP[3]="${tmp##*.}"

09 tmp="${tmp%.*}"

10 IP[2]="${tmp##*.}"

11 printf
"%03d.%03d.%03d.%03d\n"
${IP[1]} ${IP[2]} ${IP[3]}
${IP[4]}

12 done

13 }

14 exec 3<access.log

15 GetIP 3 | sort | uniq

Listing 4: String Functions

01 #!/bin/bash

02 function GetIP() {

03 IFS=". "

04 while read -u $1 -a IP; do

05 printf
"%03d.%03d.%03d.%03d\n"
${IP[0]} ${IP[1]} ${IP[2]}
${IP[3]}

06 done

07 }

08 exec 3<access.log

09 GetIP 3 | sort | uniq

Listing 5: String Functions

[1] Sample programs: http:// www.
linux-magazine. com/ Magazine/
Downloads/ 64/ bash

INFO

COVER STORYBash Tuning

35ISSUE 64 MARCH 2006W W W. L I N U X- M A G A Z I N E . C O M

