
If you use Red Hat Enterprise Linux
or a Red Hat derivative such as Fe-
dora Core or CentOS, you are proba-

bly familiar with the popup window that
asks you for the root password before
you can launch a program that should
run as root (Figure 1).

Most programs that use this authenti-
cation mechanism are tools that need
extra privileges on the system. An exam-
ple of this kind of tool is a program that
requires access to a raw network device
or a program that needs write access to
directories with configuration informa-
tion.

What you may not know is that the
whole mechanism behind this popup is
completely customizable. In this article,
I’ll show you how this mechanism
works, and I'll also show you how you
can change the default behavior.

consolehelper and
userhelper
The two packages that make this possi-
ble are called usermode and user-
mode-gtk. The usermode package con-
tains two tools that are important: con-
solehelper and userhelper. The user-
mode-gtk package contains the familiar
graphical popup window and a few
other tools.

consolehelper and userhelper work to-
gether to let a non-root user execute a
program that runs as root. Consider, for
instance, the network sniffer Ethereal.
Ethereal requires root privileges because
it needs to set the
network device to
promiscuous mode.

On a default install,
the menu is config-
ured so that if you se-
lect Ethereal, the pro-
gram /usr/bin/ethe-
real is launched. This

program is just a symbolic link to con-
solehelper:

$ ls -l /usr/bin/ethereal
lrwxrwxrwx 1 root root U
13 aug 11 20:01 U
/usr/bin/ethereal -> U
consolehelper

When consolehelper is executed, it starts
userhelper. The permissions of user-
helper are set to SUID root, so it runs as
root when it is invoked. If a program is
SUID (commonly referred to as “se-
tuid”), when the program is started, it
will run with all the privileges of the
owner of the program. Since userhelper
is owned by root and SUID, it will exe-
cute with full root privileges. When
consolehelper starts userhelper, it passes
the name of the program it needs to run
(in our example, Ethereal) to userhelper,
which then tries to authenticate the
user. If authentication succeeds,
userhelper (running as root) will
start the program as root.

The userhelper program first
checks a configuration file to
determine which program really
should be run; it then looks at a
number of other configuration op-
tions. userhelper then invokes the
Pluggable Authentication Mod-
ules system (PAM) to see if the
user is allowed to use the
service. If the service is
allowed, the real pro-

gram is launched. If the user has failed
to authenticate correctly, an error mes-
sage is displayed (Figure 2).

You’ll find configuration files for
userhelper in /etc/security/console.apps/.
The configuration for Ethereal looks
like:

USER=root
PROGRAM=/usr/sbin/ethereal
SESSION=true
FALLBACK=true

In this example, the program will ask for
the password of user root. If the authen-

We’ll show you some tricks for configuring the root password popup

window on Red Hat-based systems. BY ARMIJN HEMEL

Customizing the password popup window

PASSWORD TRICKS

Figure 1: Red Hat users are familiar with the

popup that asks for the root password.

KNOW-HOWRoot Password Window

59ISSUE 66 MAY 2006W W W. L I N U X- M A G A Z I N E . C O M

tication via PAM is successful, the pro-
gram located in /usr/sbin/ethereal will
be executed. The variable SESSION indi-
cates whether or not to use session man-
agement in PAM.

For graphical applications, such as
Ethereal, session management is needed.
The FALLBACK variable is used to deter-
mine if the program should still be run
even if authentication fails. The program
will, of course, be run without all privi-
leges and not everything will work. In
the case of Ethereal, it can still read net-
work dumps, but it will not be able to
make any new ones.

Another part of the configuration is
done via PAM. These settings, which can
be found in /etc/pam.d/, follow the PAM
standards.

This approach has one weakness: if
the directory that contains the “real”
program (in this case /usr/sbin) is earlier
in the $PATH than the directory where
consolehelper is located (by default, /usr/
bin), consolehelper will not be invoked
first and the program will either not run,
or it will not run with the right permis-
sions. You should keep this in mind if
you decide to rearrange the order in
which directories in the $PATH are
searched.

Simple Adaptations
I personally have always felt it was a bit
dangerous when credentials are cached.
You have probably seen the little keyring
icon in one of your menu bars after giv-
ing the root password through the user-
mode mechanism (see Figure 3). If this
keyring is visible, you can execute pro-
grams that would otherwise require you
to give the root password via usermode.

Many programs have this rule in their
PAM configuration file by default:

 session optional U
pam_timestamp.so

This setting means that PAM will keep a
timestamp. When a program has this

rule in its PAM configuration file, the
program will first check if there has al-
ready been a valid, cached, authentica-
tion:

 auth sufficient U
pam_timestamp.so

Commenting out the rules mentioned
above will prevent the user’s credentials
from being cached after a successful au-
thentication and will prevent authoriza-
tion using cached credentials.

Advanced Usage
Say you want to lock down which users
can execute certain programs. There are
several ways you can achieve this. The
first way is through the configuration of
consolehelper itself; the other, and more
powerful way, is through PAM.

If you are configuring through console-
helper, you can prevent users from hav-
ing to know the root password by having
them authenticate using their own pass-
words. Just change the line in the user-
helper configuration in /etc/security/con-
sole.apps/ from authenticating as root to
the following:

USER=<user>

If you do this, you will be asked for your
own password. If you enter your pass-
word successfully, the program will
start. Keep in mind that the fact that you
use your own password doesn’t change
anything with regard to the program's
privileges. The program that is started is
still run as root, so be sure you use this
feature carefully.

If you set USER to the special variable
<none>, no access will be allowed:

USER=<none>

If you try to launch Ethereal now, you
will get an error and the program will
not start (Figure 4). You will probably
wonder why this feature is useful. One
of the other configuration parameters is
UGROUPS. This parameter can be as-
signed a comma-separated list of groups.
Members of these groups will be authen-

ticated as if their names were given
in the configuration file (USER=
<user>). That is, they will be authen-
ticated with their own passwords. If
the configuration has USER=root set,
all other users will have to give the
root password. If you use both
USER=<none> and UGROUPS in the
configuration, you can give members of
certain groups the ability to run pro-
grams without them having to know the
root password. This way you can create
sudo-like behavior.

Customization using PAM
PAM offers a great variety of modules,
including options for authenticating
against a database or hardware token,
and even tools for voice recognition. In
this article I will only give a few small
ready-to-work examples of how you can
play with PAM inside consolehelper.

On certain machines on my network,
I only want certain users to be able to
sniff network traffic. For this purpose,
PAM has a module called pam_localuser.
It normally checks in /etc/passwd if a
certain account is listed, but it can also
be configured to use a separate file. I
keep the users I want to give permission
in a file called /etc/localusers, which I
make only readable and writable for
root. In this file, I only have two users.
The file is in the same format as /etc/
passwd:

root:x:0:0::
armijn:x:500:500::

In the PAM configuration, I add the fol-
lowing rule:

 account required U
pam_localuser.so U
file=/etc/localusers

Now when Ethereal is started via user-
mode, it also checks whether or not the
user is in /etc/localusers. Before this can
work cleanly, one change is needed: the
user that consolehelper authenticates
should be changed from root to the ac-
tual user. If not, the system will check if
root is in /etc/localusers instead of
checking for the real user! The configu-
ration for Ethereal should be changed to:

USER=<user>
PROGRAM=/usr/sbin/ethereal

Figure 2: The user fails to authenticate cor-

rectly.

Figure 3: If the system has credentials for

the user, the keyring will be visible in the

panel.

Root Password WindowKNOW-HOW

60 ISSUE 66 MAY 2006 W W W. L I N U X- M A G A Z I N E . C O M

SESSION=true
FALLBACK=true

If I remove the user armijn from this file,
I can’t launch Ethereal with
full privileges anymore, ex-
cept as root. With the lo-
caluser PAM module, you
can have separate files with
permissions for each pro-
gram.

Other uses for this partic-
ular module are the power-
off, halt, and reboot com-
mands. On Red Hat Linux
(and derivates) these tools are also con-
trolled by usermode. By adding a file
where you list authorized users, you can
control which users have which rights –
for example, you can control which
users have the right to power off the ma-
chine. These three commands also use
another interesting PAM module titled
pam_console, which checks if the user is
currently logged in at the local console.

Two of the rules in the PAM configura-
tion for these commands are:

auth sufficient U
pam_rootok.so
auth required U
pam_console.so

These rules mean that
only root and the user
who is logged in at the
console can power off,
halt, or reboot. Users
who are just logged in
remotely, except root,
are not allowed to turn
off or reboot the ma-
chine. By removing the

second rule, the user currently logged in
at the console can’t perform these ac-
tions anymore, except if that user hap-
pens to be root. Of course, you can still
power off the system using GDM.

Wise words
The techniques described in this article
are useful in some environments, but in
other cases, they may be totally unnec-
essary. Before you start rebuilding your
whole system to use usermode, you

should keep in mind that the tools
that make use of usermode all have one
characteristic in common: they need to
access files that normally cannot be ac-
cessed or modified by mere mortal users.

Often there is no reason at all to
change the default security system. Be-
fore you decide to deploy usermode to
restrict access to programs, you should
check to see if this option is really worth
the effort, and make sure you aren’t just
needlessly complicating your security
configuration.

More information
If you’re looking for more information,
you could start with the manpages for
consolehelper and userhelper. The user-
helper manpage is especially useful.
There are a lot of resources for help with
PAM. Start with the Linux-PAM web-
page, which you will find at http:// www.
kernel. org/ pub/ linux/ libs/ pam/. Another
good resource on PAM is Essential Sys-
tem Administration, 3rd edition, by
AEleen Frisch, which is published by
O’Reilly. ■

Figure 4: The user doesn’t

have enough permissions to

launch the program.

KNOW-HOWRoot Password Window

