
48

If you are the kind of Linux user with
a collection of homegrown scripts,
such as Perl snippets for download-

ing web comics or Shell scripts for back-
ing up files, you may have considered
adopting some form of version manage-
ment tracking. For a single user, it
doesn’t always make sense to use one of
the popular, but complex, tools, such as
CVS [2] or Subversion [3]. If you’re look-
ing for a simpler level of version control,
you may want to try the Revision Con-
trol System (RCS).

RCS is a well tested and stable tool
with excellent support. If your distribu-
tion does not come with RCS, you can ei-
ther download it from the GNU project
homepage [1], or get it direct from the
official RCS homepage [4]. The INSTALL
and INSTALL.RCS files from the un-
packed tarball, rcs-5.7.tar.Z, provide
notes for installing from the source files.

Preparation
Let’s assume you need to manage your
do-it-yourself scripts in the ~/bin direc-

Using RCS version control to manage simple scripts

IN AND OUT

Here document: A here document uses
a special kind of redirection to extract a
longer text block from a code block.

GLOSSARY

w
w
w
.p
h
oto

ca
se.co

m

The Revision Control System (RCS) provides simple, reliable version

control without the complexity of bigger systems like Subversion or

CVS. BY ANDREAS KNEIB

tory; in this case, you would start by
running mkdir ~/bin/RCS to create a
working directory for RCS. This is the re-
pository that RCS uses to store a copy of
the files it is managing, along with the ,v
extension.

The version in the RCS repository is
the original file, with a few add-ons.
When you make changes to the file, you
will actually be working on a copy.

To show you how RCS works, I’ll start
by creating a sample script. First I’ll
launch the cat tool and create a script as
a so-called here document.

[akneib]~ > cat > U
~/bin/world.sh <<__EOF__U
#!/bin/sh echo "Hello World!" U
__EOF__

Checking In and Out
To allow the Revision Control System to
accept the sample file, you need to pass
the file to the program. The ci (for check
in) command handles this. After giving
the command, the version management
tool prompts you to describe the file or
add some notes. Type a dot in a blank
line to complete your description. This
completes the check-in process, and RCS
assigns version number 1.1 to your sam-
ple script:

[akneib]~/bin > ci world.sh
RCS/world.sh,v <-- world.sh
enter description, U
terminated with single U
'.' or end of file:
NOTE: This is NOT U
the log message!
>> Description of file
>> .
initial revision: 1.1
done

Running the ls ~/bin command reveals
that the world.sh file has disappeared
from the directory. The file has now
been converted and is stored as a revi-
sion file below ~/bin/RCS/world.
sh,v(Listing 1).

This behavior may not be what you
expected, as the script has been removed

IN AND OUT

Revision Control SystemKNOW-HOW

48 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

from its previous path and no
longer works. You can either
check the file out or use the
-u (for unlocked) option
when checking the file in.
The ci -u world.sh command
creates a non-editable copy
below ~/bin when you
check in a file.

To avoid being prompted to
supply a comment, you can
pass the quoted comment by
setting the -m flag when
checking in a file. For exam-
ple, co -u -m"Description"
world.sh would check in a
file, automatically add a com-
ment, and then check out a
read-only copy.

The -u option tells RCS not
to lock the file. This option is
quite useful if multiple users
are working on a single file.
A version control system not
only supports change track-
ing for the file, it also remove
the danger of different users
overwriting each other’s
changes.

To open the script in your
editor and make some
changes to it, set the -l (for
locked) option when check-
ing the script out; this option
prevents access by other
users, even though the other
users might actually have ac-
cess privileges for the file.
The following command han-
dles this:

[akneib]~/bin > U
co -l world.sh
RCS/world.sh,v --> U
 world.sh
revision 1.1 (locked)
done

This gives you exclusive
write access to world.sh, as
the ls -l world.sh command
then reveals.

You can then go on to open
the script in your favorite edi-
tor and add a comment line.
I will be using the interactive
ed editor in these examples.
ed is available as a variant of
the more popular vim editor

on many systems, and al-
though using ed may seem a
bit strange at first, ed is a
great tool for quick changes
to text files.

[akneib]~/bin > U
ed world.sh
28
.
echo "Hello World"
i
This is a comment line
.
wq
59

The tool outputs the number
of lines in the file at the start
and at the end. The dot tells
ed to output the current line.
At the same time, ed quits the
input, which you start by
pressing the [i] key.

After making these changes
to the file, check the file
in once more. RCS will ask
you to supply a note to de-
scribe the changes you made.
You can quit writing the note
by typing a single dot in a
line.

[akneib]~/bin > U
ci -u world.sh
RCS/world.sh,v U
 <-- world.sh
new revision: 1.2; U
previous revision: 1.1
enter log message, U
terminated with U
single '.' U
or end of file:
>> Added comment line
>> .
done

This whole process ups the
version number for world.sh
from 1.1 to 1.2. But what
happens if you do not like the
new version and would prefer
to revert to revision number
1.1 of your script? If you de-
cide you want to revert to an
earlier version, you need the
check out command’s -r op-
tion to specify the revision
you would like to check out:

ADVERTISEMENT

01 RCS file: RCS/world.sh,v

02 Working file: world.sh

03 head: 1.2

04 branch:

05 locks: strict

06 access list:

07 symbolic names:

08 keyword substitution: kv

09 total revisions: 2;
selected revisions: 2

10 description:

11 Description of file

12 ----------------------------

13 revision 1.2

14 date: 2006/02/06 07:38:50;
author: akneib; state: Exp;
lines: +1 -0

15 Added comment line

16 ----------------------------

17 revision 1.1

18 date: 2006/02/01 14:16:10;
author: akneib; state: Exp;

19 Initial revision

20 ==============================
==============================

Listing 2: Rlog output

[1] GNU RCS project homepage: http://
www. gnu. org/ software/ rcs/ rcs. html

[2] Concurrent Versions System (CVS):
http:// www. nongnu. org/ cvs/

[3] Subversion project homepage:
http:// subversion. tigris. org

[4] RCS homepage: http:// www. cs.
purdue. edu/ homes/ trinkle/ RCS/

INFO

01 head 1.1;

02 access;

03 symbols;

04 locks; strict;

05 comment @# @;

06

07 1.1

08 date 2006.02.01.14.16.10;
author akneib; state Exp;

09 branches;

10 next ;

11

12 desc

13 @Description of file

14 @

15

16 1.1

17 log

18 @Initial revision

19 @

20 text

21 @#!/bin/sh

22 echo "Hello World!"

23 @

Listing 1: Revision file

[akneib]~/bin > U
co -r1.1 world.sh
RCS/world.sh,v --> U
 world.sh
revision 1.1
done

The following cat output demonstrates
that you again have the original version
of the script without the addition of
the comment line:

[akneib]~/bin > cat world.sh
#!/bin/sh
echo "Hello World!"

However, typing co -r1.2 world.sh would
check out version 1.2 from the reposi-
tory.

Versions
All of this checking in and out may be
fine, but you may be missing the control
aspect of version control. The rlog and
rcsdiff commands give you control over

the revisions. Typing rlog world.sh out-
puts details of the program, such as the
description and the authors of the vari-
ous revisions, along with the various an-
notations (Listing 2).

Rcsdiff tells you the differences be-
tween versions 1.1 and 1.2 of your
script. Just like with the co command,
the -r option defines the revision num-
bers that rcsdiff will compare, as in the
following:

[akneib]~/bin > U
rcsdiff -r1.1 -r 1.2 world.sh
===================
RCS file: RCS/world.sh,v
retrieving revision 1.1
retrieving revision 1.2
diff -r1.1 -r1.2
1a2
> # This is a comment line

In addition to this, RCS supports a num-
ber of variables; one of the most com-
mon variables adds author and status

data to a file. Start by checking out the
file in question using the command we
looked at earlier: co -l world.sh. Then
change the line that says # This is a com-
ment line by inserting the RCS variable
Id after the hash. To keep things sim-
ple, I will be using the ed editor for this
again:

[akneib]~/bin > ed world.sh
59
2
This is a comment line
c
Id
.
wq
35

After saving the file, give the ci -u world.
sh to check it back in. A quick glance at
the script tells us that the version man-
agement tool has expanded the Id
variable:

[akneib]~/bin > cat world.sh
#!/bin/sh
$Id: world.sh,v 1.3 2006/02/06
10:05:59 akneib Exp $
echo "Hello World!"

The line gives you details such as the
filename, the revision number, the date
and time, and the author of the file. The
check out manpage, which you can open
by running the man co command, pro-
vides additional information on the vari-
ous options available with this com-
mand.

Conclusions
The Revision Control System is a great
tool for managing short scripts or config-
uration files. RCS provides safety and se-
curity for complex system management
tasks, yet the RCS command set includes
only a few short and easy-to-use com-
mands. ■

Revision Control SystemKNOW-HOW

50 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

