
28

Red Hat developers have been
working on an alternative to Xgl,
which they have dubbed AIGLX.

AIGLX promises hardware accelerated
desktop effects, while at the same time
facilitating integration with the Xorg in-
frastructure.

The Fedora Rendering Project de-
scribes AIGLX as “a project that aims to
enable GL-accelerated effects on the
standard desktop. They add, “We have
a lightly modified X server (that includes
a couple of extensions), an updated
Mesa package that adds some new pro-
tocol support, and a version of Metacity
with a composite manager. The end re-
sult is that you can use GL effects on
your desktop with very few changes, you
can turn it on and off at will, and you
don’t have to replace your X server in
the process.”

AIGLX is part of an ecosystem of
graphics components that interact to de-
liver better performance and more vivid
images. How did all this happen and
what does it mean for the user? This ar-
ticle describes the context for the evolu-
tion of AIGLX and a new generation of
graphics technologies.

The State of Computer
Graphics
The current desktop design is starting to
show its age in several areas. First, the
current desktop is designed around a 2D

display device, while the graphics card
hardware has shifted dramatically to em-
phasize 3D. Integrating 3D into the desk-
top has long been the goal, but until re-
cently, it has not been possible. Other
operating systems have also recognized
this paradigm shift – Apple is using
OpenGL through its Quartz [1] composi-
tor architecture and Sun has a research
project called Looking Glass [2] to exper-
iment with using Java3D on their desk-
top.

A second problematic area is that all
of our drawing is rendered directly into
the front buffer. What this means is that
users can see rendering artifacts while
the desktop scene is being constructed.
Most drawing is very fast, so it usually
appears as a visually displeasing blur be-
fore the final image is visible, but some-
times is it much worse and you can see
individual elements being drawn. Tradi-
tionally, toolkits have had to work
around this problem by drawing directly
to host-memory pixmaps and then copy-
ing the finished image to the screen.

The third problem is the static nature
of the windowing states, and the fact
that the transitions between those states
are either instantaneous or have very
primitive transition animations. For ex-
ample, minimizing or unminimizing
windows either simply pops windows
into or out of existence, or very simple
window outlines are drawn in sequence

from the window to the icon in the
Gnome panel to show the transition.

Building on the Past
The current vision for an OpenGL-based
composited desktop is built on several
key technologies that have been devel-
oped over the past several years.

Throughout most of the 1990s, the
only open source implementation of
OpenGL was Mesa [3], which was, at
that time, a software-only client-side li-
brary that implemented the OpenGL in-
terface. Then, in late 1998, Precision In-
sight began developing the Direct Ren-
dering Infrastructure (DRI) [4]. This
project brought hardware-accelerated 3D
graphics to Linux, but as the name im-
plies, it was only for direct rendering ap-
plications. Indirect rendering was imple-
mented using the software Mesa code.

The DRI allowed applications that
wanted to take advantage of the 3D
hardware to do so through the OpenGL
library (libGL). Traditionally, only
specialized 3D applications wrote
directly to OpenGL or one of its toolkits.
These apps had no (or very little) direct
knowledge of the 3D hardware under-
lying libGL because the DRI itself is a
general purpose infrastructure that loads
a card-specific driver to handle all
accelerated OpenGL functions. The card-
specific drivers have a well-defined set
of entry points to handle initialization

Red Hat’s head of X development

describes the evolution of AIGLX.

BY KEVIN E. MARTIN

w
w

w
.sxc.h

u

GRAPHIC HORIZONS
AIGLX and the rise of the composite desktop

GRAPHIC HORIZONS

AIGLXCOVER STORY

28 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

29

and hook themselves directly into the
libGL library.

With the relatively recent development
of the Composite extension [5], we now
have the ability to redirect 2D pixel data
into host-memory or off-screen pixmaps.
This pixel data can then be copied to the
display buffer as needed to update what
the user sees on their screen as their
desktop. This effectively gives us the
ability to double-buffer 2D data, an abil-
ity that has long been used by OpenGL
applications to eliminate visual artifacts.

This ability is not new. The double-
buffer extension (DBE) allowed individ-
ual apps to double buffer their output.
What makes Composite unique is that
individual application do not need to
have direct knowledge of the DBE. In-
stead, an external application known as
the composite manager controls when
windows are redirected and how the
pixel data is copied to the display buffer.

Luminocity
In late 2004, we began experimenting
with using OpenGL to render redirected
windows in our Luminocity project [6].
The example composite managers that
had been developed previously used the
Render extension to copy the window
data to the screen (e.g., xcompmgr). As
noted earlier, Apple was using OpenGL
to achieve similar effects, and Sun had
been experimenting with using Java3D
in their Looking Glass project.

The basic idea behind Luminocity was
to create OpenGL textures using the
pixel data from each redirected window
and then draw textured rectangles to the
front buffer using each of those textures.
Since the only open source hardware-ac-
celerated OpenGL available at that time
was through the DRI, Luminocity was
developed to use direct rendering. The
problem with this approach was that the
pixel data had to be copied from the X
server to the client before it could be
used as a texture. These extra copy steps
hurt performance.

Another difference was that previous
composite managers were separated
from the window manager, whereas Lu-
minocity was a combined composite and
window manager. By combining the
two, Luminocity could not only copy
window data to the screen and render
static effects like window shadows, but
it could also animate various state tran-

sitions. For example, we created the
wobbly window effect, where windows
were modeled with a simple spring sys-
tem, so that dragging a window around
would distort it as if you were pulling on
one of the springs.

The New Gl-based
Composite Desktop
One of the primary performance prob-
lems with Luminocity was the number
of data copies required to get the redi-
rected window pixel data into a texture
that could be used by the hardware.
Ultimately, we want to get to the point
where no copying of redirected window
pixel data is necessary, i.e., a redirected
window could be drawn to an off-screen
pixmap in the correct format to be used
directly by the hardware’s 3D engine. To
this end, we implemented two new in-
frastructure-level technologies: Acceler-
ated Indirect GLX (AIGLX) and the GLX
EXT_texture_from_pixmap extension
(TFP). On top of this new infrastructure,
we built a new scene-graph-based com-
positing library that is used by the
Metacity window manager to implement
the OpenGL animation effects.

Accelerated Indirect
Rendering
As noted earlier, indirect rendering was
completely unaccelerated in the initial
DRI project. The plan had always been
to implement accelerated indirect ren-

dering using the same card-specific
driver code that is loaded on the client-
side by libGL; however, it was not a sim-
ple task, and the driving issue to make
this happen did not occur until we came
to the GL-based composited desktop.

The software Mesa driver used in the
initial DRI work was based on the client-
side version of Mesa, which translated
OpenGL requests into X11 drawing com-
mands. We modified this code, which
was previously called libX11, to instead
call the equivalent internal X server
functions. We named this version GL-
core. The interfaces used to initialize
and call into GLcore were the __GLinter-
face and __GLdrawablePrivate structs,
which are part of the OpenGL sample
implementation (SI) [7].

However, the DRI project used Mesa
instead of the SI, so the interface to the
card-specific drivers were Mesa-based,
which is quite different from the GLcore
interface. This impedance mismatch was
one of the reasons that it took so long to
implement AIGLX. So, to take advantage
of the DRI/ Mesa card-specific drivers
within the X server for AIGLX, we had to
reconcile these two interfaces.

We developed a new abstraction layer
[8], which is heavily based on the DRI
interface, to provide the glue logic be-
tween the server-side GLX extension
code and the card-specific driver. The
new interface provides three objects:
__GLXscreen, __GLXcontext and

Figure 1: Luminocity supports transparent windows.

COVER STORYAIGLX

29ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

__GLXdrawable. Methods for allocating
the DRI-specific objects and calling into
the card-specific driver are contained en-
tirely within the abstraction layer, which
we called the DRI provider.

Since not all graphics cards have card-
specific 3D drivers, and since several
other servers (e.g., Xnest) that provide
GLX support cannot use hardware driv-
ers, the GLcore module must remain
available, so we rewrote the top level of
GLcore to use the new interface. This al-
lows it to be used in place of the card-
specific drivers when needed or desired,
and it is called the GLcore provider.

To initialize the GL module for each
screen, a stack of GL providers are called
and the first provider that returns a non-
NULL. __GLXscreen claims that screen.
This mechanism allows for future GL
modules to implement their own __GLX-
provider and hook into the provider
stack.

GLX_EXT_texture_from_
pixmap
With accelerated indirect OpenGL, we
can now render directly from within the
X server process; however, we still need
to be able to use the window pixel data
that was redirected to a pixmap with the
Composite extension as a texture. This is
what the texture from pixmap GLX ex-
tension provides.

The simple approach would be to copy
the data either through the protocol via
XGetImage or through a shared-memory
pixmap into the client’s address space,
and then the direct-rendered composite
manager could use that data as the
source for a glTexImage2D or glDrawPix-
els call. This does not work in practice
due to the high overhead of copying
pixel data to and from video memory.

A better approach is to keep the pix-
map data in the X server address space
where it was rendered and use it directly
as the source for a texture operation.
GLX_EXT_texture_from_pixmap pro-
vides the interface to make that happen.
As noted above, the ideal solution is to
have the graphics card render the win-
dow contents into an off-screen buffer,
which would then be used directly (i.e.,
with no copying or conversion) as the
input to the hardware texture engine. To
implement this solution, we will need
additional infrastructure work (e.g.,
memory management) as well as addi-
tional card-specific driver work, both of
which are currently in development.

Our intermediate TFP solution redi-
rects window data into host-memory
pixmaps and calls the texture operations
directly through the new AIGLX abstrac-
tion layer interface to the Mesa/ DRI
card-specific driver. By rendering directly
to host-memory pixmaps, we bypass the
“read from framebuffer” operation,
which can be quite slow.

Metacity
Luminocity was a toy window and com-
posite manager that allowed us to rap-
idly prototype various technologies and
experiment with using OpenGL in a
composited desktop. We could have ex-
panded Luminocity into a fully func-
tional window manager, but this would
have involved recreating the years of
work that went into our standard desk-
top window manager, Metacity. Instead,
we took what we learned from Luminoc-
ity and reimplemented it in Metacity.

Our approach was to create a new
OpenGL scene-graph-based compositing
library, called libcm, that would encap-
sulate the methods used by the rest of
the window manager to draw the desk-
top. Metacity could then hook various
state transition animations into the
scene-graph as needed.

By making the full OpenGL interface
available, we can create arbitrarily com-
plex animations that are only limited by
what we can dream and what the hard-
ware is capable of. Some common ef-
fects that we already have or are in the
process of implementing include minimi-
zation, maximization, menu fade in/ out,
drop shadows, window transparency,
and workspace switching. Many others
will be developed as the need arises.

It should be noted that, while AIGLX
and TFP are critical to our GL-based
composited desktop, we have developed
them so they can be used independently
by application developers. For example,
Compiz [9] is another window/ compos-
ite manager that takes a different ap-
proach but works well using technolo-
gies we have developed [10].

Technology Preview
We currently have a technology preview
that redirects windows to host-memory
pixmaps in the X server and then uses
the texture from pixmap extension to use
the host-memory pixmap as a texture
source. This eliminates all but the last
data copy and provides reasonable per-
formance. You'll find more information,
demos, and status about our GL-based
composited desktop project at [11].

There is still much to do. We and oth-
ers in the open source development
community are in the process of adding
several new technologies. These include
input transformation, advanced memory
management, redirecting extensions
(e.g., Xv, GL, DRI), frame buffer objects,
FBconfigs, and full GLX 1.3 support. As
these and other technologies are devel-
oped, we will continue to update our
GL-based composited desktop solution
to take advantage of the new features. ■

[1] Quartz compositor architecture:
http:// www. apple. com/ macosx/
features/ quartzextreme

[2] Looking glass desktop: http:// www.
sun. com/ software/ looking_glass

[3] Mesa: http:// www. mesa3d. org

[4] DRI: http:// dri. freedesktop. org/ wiki

[5] Composite extension:
http:// cvs. freedesktop. org/ xlibs/
CompositeExt/ protocol?view=markup

[6] Luminocity:
http:// live. gnome. org/ Luminocity

[7] OpenGL sample implementation:
http:// oss. sgi. com/ projects/ ogl-sample

[8] GLX abstraction layer:
http:// lists. freedesktop. org/ archives/
xorg/ 2006-February/ 013326. html

[9] Compiz:
http:// en. opensuse. org/ Compiz

[10] Compiz with AIGLX:
http:// lists. freedesktop. org/ archives/
xorg/ 2006-March/ 013577. html

[11] Fedora rendering project:
http:// fedoraproject. org/ wiki/
RenderingProject/ aiglx

INFO

Kevin E. Martin has been working
on the X Window System for the
past 17 years. He was the principle
architect of the Direct Rendering In-
frastructure (DRI) and Distributed
Multihead X (DMX) system. He has
also developed many 2D and 3D
drivers. He is the head of X and
OpenGL development at Red Hat,
serves on the X.Org Foundation
Board of Directors, chairs the X.Org
Foundation’s Modularization Work-
ing Group and was the overall re-
lease manager for the last Xorg re-
leases.

T
H

E
 A

U
T

H
O

R

AIGLXCOVER STORY

30 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

